

The Mobile Web
Handbook

Published 2014 by Smashing Magazine GmbH, Freiburg, Germany.

Printed in the EU. ISBN: 978-3-94454093-1.

Cover Design, Illustrations and Layout by Stephen Hay.

Copyeditor and Proofreader: Owen Gregory.

Editing and Quality Control: Vitaly Friedman.

eBook Production: Cosima Mielke.

Typesetting: Markus Seyfferth.

The Mobile Web Handbook was written by Peter-Paul Koch

and reviewed by Stephanie and Bryan Rieger and Vasilis van Gemert.

Links and updates of this book can be found at

http://quirksmode.org/mobilewebhandbook.

Table of Contents

F o r e w o r d

Introduction 9

C ha p te r 1

The Mobile World 17

C ha p te r 2

Browser 45

C ha p te r 3

Android 67

C ha p te r 4

Viewports 85

C ha p te r 5

CSS 131

C ha p te r 6

Touch and Pointer Events 147

C ha p te r 7

Becoming a Mobile Web Developer 197

C ha p te r 8

The Future of the Web on Mobile 219

Introduction

Introduction

I N T R O D U C T I O N 9

Introduction
The Mobile Web Handbook explores the differences between mobile and

desktop web development that we should be aware of when creating

websites for both. It’s not very technical — there are only a dozen or

so simple code examples. It discusses no libraries or tools. It’s about

mobile web fundamentals.

There is no mobile web distinct from the desktop web. Developing

websites for mobile is pretty much the same as developing for desktop,

especially now that responsive design techniques allow us to adapt our

CSS layouts to both huge desktop screens and tiny mobile ones.

Still, there’s “The Mobile Web” in the title of this book, and that’s not

an oversight or marketing trick. It serves as a convenient shorthand

for “touch-based small-screen web on more browsers than you’ve ever

heard of.” Mobile web development is not fundamentally different

from desktop, but there are subtle distinctions that may cause you

trouble if you’re unaware of them.

T H E M O B I L E W EB H A N D B O O K10

It’s best to see mobile web development as a layer that you apply on top

of regular web development, and which contains a few new concepts

and techniques that you must understand in order to create compelling

mobile experiences. This book concentrates on that mobile layer, and

highlights three topics:

1. On desktop we have only five browsers, but on mobile it’s more

like 20 or 30. These are not all separate browsers: many of them

are subtly different versions of the same browser, especially of

Android WebKit. Why is that? How do you handle it? Why is

Android so complicated? How will the mobile browser market

develop?

2. On desktop, there’s only one single viewport: the browser window.

On mobile, this viewport was split into two, and a third viewport

was added. Why do we need three viewports? How do they work?

3. Desktop has its keyboard and mouse events, and touchscreen

browsers need special JavaScript events to react to the user’s touch

actions. This may seem logical but Microsoft, of all companies,

challenged that logic and raised interesting philosophical

questions about the relationship between JavaScript events and

interaction modes. On a practical level, the touch events have

some special features that you need to know about.

Browsers, viewports, and touch events are the main themes of this

book. There are also a few smaller items: the rise and fall of browsers

and operating systems; what proxy browsers are; why a few CSS dec-

larations such as position: fixed are more difficult to get right on

mobile than on desktop; and becoming an accomplished mobile web

I N T R O D U C T I O N 11

developer by setting up a device lab and reconsidering outdated de-

velopment practices. As a bonus, you will learn why responsive design

works. (Not how. You already know how. But do you know why?)

So here we go. It’s going to be quite a journey.

What This Book Doesn’t Cover
In order to manage your expectations, here are a few topics that are

not treated in this book. This is about the mobile web, so there is no

information on native apps. You can use this book for creating hybrid

apps (that is, apps written in HTML, CSS, and JavaScript but wrapped

in native code), but only for the web component, not for the native one.

I’m not a designer, so I don’t say anything about design except for some

very vague general tips. No design patterns, either.

The mobile market is very volatile, and browsers and devices that are

a hit now could be a memory in a year’s time. That’s why I try to steer

clear of inspecting individual devices and browsers, though sometimes

I make an exception for Safari on iOS because it’s so very influential on

web development thinking.

Finally, the most complicated caveat: this book only investigates funda-

mental differences between desktop and mobile, and generally ignores

topics such as AppCache, which, though more important on mobile

than on desktop, are not unique to mobile. This is sometimes a subtle

distinction, but it helped me a lot in keeping the scope of this book, and

of my research, to manageable levels.

T H E M O B I L E W EB H A N D B O O K1 2

Companion Site
Writing a book about the mobile web is challenging because it’s one

of the fastest-changing environments ever — faster by far than the

traditional desktop web. I write this in summer 2014, and by the time

you read it things will have changed. That’s why I try to concentrate on

fundamental issues and problems, and don’t pay too much attention to

quick-shifting details such as browser bugs.

Still, you need to know about the bugs as well. That’s why I created a

companion site at http://quirksmode.org/mobilewebhandbook that con-

tains links to my browser research to back up what’s in this book — or,

as time progresses, to show which mobile browsers have mended the

errors of their ways, or changed, or done something else of note.

In this book I occasionally give browser compatibility notes, but more

often I’m rather vague; for instance, saying that “many browsers”

support this or that. The companion site always gives a breakdown of

those browsers, and includes notes on bugs.

Tablets
The Mobile Web Handbook focuses on mobile devices; that is, small de-

vices that fit in the palm of your hand and can establish a connection

over a mobile network. It does not really cover tablets or other types of

devices.

Still, a lot that’s in the Handbook also applies to tablets. Tablets, too,

have touch-based browsers, and although they have larger screens

than mobile phones, they’re still smaller than most desktop screens

and have three viewports instead of one.

I N T R O D U C T I O N 1 3

Besides, what exactly is a tablet?

Samsung, in particular, tends to bring

out more and more very large phones,

which you can easily see as small tablets

instead. The Microsoft Surface is a tablet

with an attachable keyboard, which

converts it more or less into a laptop

computer.

Right now we can’t tell if tablets are go-

ing to remain a separate device category,

or if they’ll quietly fold into the phone and laptop categories. From a

technical perspective it doesn’t really matter, though. Tablet browsers

are mobile browsers in all respects, and obey the same rules and

restrictions. Although this book will hardly mention tablets again, you

can safely assume that anything you build for mobile will work on a

tablet as well, with the obvious caveat that a tablet screen is bigger than

a phone screen and your responsive design should accommodate that.

Thank Yous
This book didn’t spring from my forehead fully formed. Plenty of people

were involved, and I’d like to thank all of them. Vitaly Friedman saw

the potential of this book, signed me up, and was the general editor

for all chapters. Markus Seyfferth arranged all practical matters such

as contracts and printing. Stephanie Rieger was good enough to be the

technical editor for all chapters. Stephen Hay signed on for the cover,

illustrations, and overall book design. Patrick Lauke edited the Touch

and Pointer Events chapter, a topic he knows more about than most

other web developers I know combined. Max Firtman went over the

Browsers and Android chapters and provided valuable feedback.

Is the Samsung Galaxy Note 8.0, released

in Q2 2014, a huge phone or a mini

tablet? Or is the distinction meaningless?

T H E M O B I L E W EB H A N D B O O K14

Then a compelling presentation by Jason Grigsby and a discussion

with the MSIE team caused me to overhaul the Touch and Pointer

Events chapter once more. Finally, Vasilis van Gemert read through

the entire second draft from the perspective of a teacher, while Owen

Gregory signed up for those last finicky copy edits that make a good

book a great one. Thank you all, ladies and gentlemen. The book

wouldn’t have been as good as it is now without your timely help.

All remaining errors are, unfortunately, my own.

Now let’s get started with a general overview of the mobile world. You’ll

find that it differs a lot from the desktop world we’re used to.

Chapter 1

The Mobile World

T H E M O B I L E W O R L D 17

Chapter 1

The Mobile World
In order to understand mobile web development we have to under-

stand the mobile world. Where the desktop situation is pretty well

understood, mobile is so different that it pays to examine it in detail

and carefully note how it’s different. Not only will that explain why

certain browsers are more important than others, it will also make you

sensitive to several issues that don’t play a role on desktop at all but are

vital on mobile. In particular, the role of the mobile network operators

is quite different from the desktop ISPs.

The Mobile Value Chain

N E T W O R K H A R D W A R E S O F T W A R E S E R V I C E S C O N S U M E R

The mobile value chain extends from the network operators, via device vendors, soft-

ware makers, and service providers to the consumer. This chapter will study the first

three links in the chain.

T H E M O B I L E W EB H A N D B O O K18

Traditionally, the mobile value chain was formed by operators (called

carriers in the US) and device vendors. Recently, operating system

vendors entered the value chain, and they are being followed by service

providers. In fact, the software and service layers are rapidly gaining in

importance, and thus software vendors such as Google and Microsoft,

and service providers such as Facebook and WhatsApp are becoming

equal partners to operators and device vendors.

Each link in the chain enhances the value of the others. For example,

a mobile network is worthless without mobile phones, and vice versa,

while mobile phones can’t do without a first-rate operating system and

important service apps. Thus the four parts of the mobile value chain

are dependent on one another. Despite that, they sometimes act against

one another because each of them has the same goal: commanding

consumer mindshare and money. Each of them would love to lock the

consumer into a vertical silo of its own making, where anything the

consumer does is controlled by the company and makes money for the

company. (Apple is, of course, the most successful example.)

At the same time, operators and device vendors fear becoming com-

moditized; that is, becoming indistinguishable from their direct

competitors. If all network connections are the same, why would con-

sumers care which operator they’re with? If nearly every phone runs

Android, why would consumers care what kind of phone they buy?

They don’t, and that’s why the Android vendors have their minds set on

differentiation. We’ll get back to that.

On a large scale, studying the mobile market is mainly a process of pre-

dicting which companies — and which parts of the value chain — will

be more successful than others in avoiding commoditization.

T H E M O B I L E W O R L D 1 9

Operators

The operators own and maintain the mobile networks. Until now, they

were the winners of the mobile game because they made incredible

amounts of money, especially on text messages, and they dominate the

consumer market by subsidizing devices.

Operators have no points of differ-

entiation: in the end, consumers

care very little whether they’re on

Vodafone’s or T-Mobile’s network.

Besides, operator profits are falling

as a result of changing consumer

habits: customers are sending

fewer text messages, preferring

to use other IM solutions such as

BlackBerry Ping and WhatsApp.

Some operators understand they

have to work with (web) developers

and offer them APIs for payments,

like Blue Via does; but not all do so,

and even the ones who do have to

compete with Apple’s App Store and

N E T W O R K H A R D W A R E S O F T W A R E S E R V I C E S C O N S U M E R

Telefónica’s Blue Via initiative

(http://smashed.by/bluevia) offers a

fairly easy API for mobile payments.

Purchases from developers are paid via

the monthly invoices Telefónica sends

to its clients anyway. Better, clients

don’t have to register because they’re

already registered with Telefónica. The

disadvantage is that it only works on

Telefónica’s networks and a few others.

Operators could play a major role in

online payments, but so far haven’t built

a global payment system — and time is

running out.

T H E M O B I L E W EB H A N D B O O K20

Google Play, which have become the standard for mobile purchasing.

The operators, then, are in trouble. I expect them to gradually become

less important, as other mobile players, especially device, OS, and

service vendors, win consumer mindshare — and the consumer money

flow. At the time of writing, though, they still have a powerful position.

Connection Providers
In a large part of the world, operators are just connection providers.

However, in many, but not all, developed countries, they have a much

larger role, actively deciding which devices consumers will get.

Let’s start with the simpler case. In most developing nations, average

consumers buy a phone at a specialist store, or a Samsung, Nokia, or

other branded store and, once they have the hardware, get a SIM card,

usually pre-paid, at another store. They top up their SIM card when

it’s necessary (and they have the money). In fact, many consumers get

more than one SIM card. They search for the best deal for voice, then

for SMS, and possibly in future for data as well, and switch networks

based on what they want to do right now. This, in turn, makes dual (or

even triple) SIM card devices popular: consumers aren’t going to man-

ually switch SIM cards several times per day.

In this model, operators are not all that powerful. They offer a service

and compete against other companies offering the same service, with

consumers paying avid attention to pricing and quality. Simple.

Operator Subsidies
In many developed countries operators play a quite different role, since

they actually sell phones to consumers and offer a subsidy.

T H E M O B I L E W O R L D 21

These subsidies are a powerful weapon because the psychological

mechanism behind them is so devious that nearly all consumers fall

for it.

Operators offer phones to consumers

for a lower price than they can find

elsewhere. If you buy a new high-end

Android phone in the operator’s store,

you might pay only €100 or so, while the

normal sales price is more like €600. Of

course, the operators don’t give you €500

out of their own pocket: they earn it back

(with interest) on the two-year contract

that you’re obliged to sign.

Although buying a smartphone for the full price and a separate con-

tract for connectivity is cheaper in the long run, the psychological dif-

ference between €100 and €600 is so huge that most consumers don’t

even think about buying a phone anywhere else than in an operator’s

store. (My sister saw through the operators’ cunning plan without my

having to brief her, and bought her iPhone directly from Apple. I was

very proud of her. But she’s an exception.)

Here’s something you should do every few months. Go to an opera-

tor’s store, pretend you know nothing about smartphones, and ask for

advice on purchasing a phone. The store clerk will efficiently steer you

towards the type of phone that the operator currently wants you to buy.

Although operator subsidies

exist in many developed

countries, sometimes

they’re forbidden by law, for

instance in Belgium and Italy.

Here consumers buy phones

and subscriptions separately.

T H E M O B I L E W EB H A N D B O O K2 2

Store clerks earn a slight commission on any phone they sell, but the

exact amount depends on the type of phone. By changing the commis-

sion, operators make sure clerks drive consumers toward the devices

they want to be sold right now.

At the time of writing, that device is always an Android phone, and

often a Samsung. Consumers are familiar with the brand, and most

Android vendors are able to produce phones fairly cheaply due to econ-

omies of scale. This lower price frees up extra money for the bottom

line — and even a little for store clerks, independent resellers, and

consumers.

Through this process, operators gain considerable power over device

vendors. If the operators decide that they don’t want to sell certain

types of phones, they can simply remove them from their stores. Some-

times they’re contractually obliged to offer the phones, but in that case

they place the devices at the back of their stores and slash the clerks’

commission, with the obvious result that nobody buys them anymore.

The takeaway for us web developers is that by deciding which phones

will be offered to unsuspecting consumers, operators influence the mo-

bile browser market, because those devices’ default browsers will get

more market share. Thus, keeping track of operators’ current prefer-

ences is important.

Subsidies or No Subsidies?
So what’s the difference between providing a subsidy and not provid-

ing one? Obviously, subsidies and the commission system give oper-

ators more power over device vendors, which usually translates into

lower device prices for them (and they get bulk discounts anyway).

T H E M O B I L E W O R L D 2 3

Also, the subsidies cause more high-end devices to be sold, since more

people (think they) can afford them.

Conversely, many consumers in unsubsidized countries opt for mid-

range or cheap phones, because there is no subsidy and people in devel-

oping countries have less disposable income. Since consumers have to

pick a phone themselves, brand awareness becomes more important.

When confronted with devices of a similar price, will the average con-

sumer pick a Samsung or a Nokia? Device vendors try to influence con-

sumers’ brand awareness through ad campaigns and flagship stores.

Samsung, in particular, has the advantage that its brand is also known

in related electronics fields like TVs and household appliances.

Nokia and Samsung have specific phones for both types of markets.

Vendors that exclusively create expensive high-end smartphones, such

as BlackBerry and HTC, have more trouble in the unsubsidized mar-

kets, although BlackBerry is still fashionable in some countries, such as

Indonesia. In general, though, the subsidized markets are more import-

ant for these vendors, which makes them more vulnerable to operator

whims.

From the operators’ perspective, subsidized markets are ideal, since

they give them lots of power. As we saw earlier, their big worry is that,

like in unsubsidized markets, they will become dumb pipes, only good

for transferring data packages from A to B.

Avoiding this fate is their prime purpose right now, and they generally

understand that they have to offer something to developers. Unfortu-

nately they’re not very good at developer relations, because what they

T H E M O B I L E W EB H A N D B O O K24

offer is complicated, restricted to their own network, and may be gone

after one or two years, when the next reorganization brings in new

managers who want to do things differently simply because they can.

Developer and Consumer Mindshare
And what about Apple? It is a special case, which is why operators don’t

like the Cupertino giant. As one would expect, Apple’s hefty pricing

leads to a lower sales market share in unsubsidized countries, but even

there sales are decent and growing. Apple is expensive, but it has such

a huge brand awareness and customer loyalty that the price tag doesn’t

really matter. iPhones are becoming status symbols for the up-and-

coming middle class in developing countries.

Apple’s real power lies in the subsidized markets, though. There, it can

break the operators’ power over the consumer quite easily, because a

small but dedicated (and affluent) slice of smartphone buyers wants an

iPhone, and isn’t interested in anything else. When a store clerk is con-

fronted with such a consumer he’ll give in and sell an iPhone instead of

the current operator offering, because a sale is better than no sale. But

operators don’t like it.

The reason Apple — and only Apple — has this power is because it is

popular with both consumers and developers. Google has a lot of devel-

oper mindshare, but not so much consumer mindshare. The traditional

mobile companies such as Samsung and Nokia have a lot of consumer

mindshare, but not very much developer mindshare. Only Apple has

both, and that gives it enough power to occasionally ignore operators.

T H E M O B I L E W O R L D 2 5

Device Vendors And Hardware

Mobile networks are worthless without mobile phones. Duh. It’s time

to turn to device vendors and their role in the mobile market.

Device vendors create the mobile hardware, and sometimes the soft-

ware. Most of them try to cover the entire mobile market, from cheap

to expensive, by creating several lines of phones. Obviously, the cheap

phones have less powerful hardware and less functionality than the

expensive ones.

Following a Phone
Before delving into the details, we need to understand the big picture.

So, let’s follow a phone from its inception until it ends up in the con-

sumer’s pocket. Suppose Samsung decides to produce a new high-end

smartphone. The first item on the agenda is to figure out what kind

of components it can afford for a reasonably priced phone while still

making a profit. Tightly tied in with this is the selection of an OS. The

most obvious choice at the time of writing is Android.

Then the phone gets designed: the hardware, the UX, and the changes

to the default Android software. Also, Samsung decides which of its

own apps it will include as firmware.

N E T W O R K S O F T W A R E S E R V I C E S C O N S U M E RH A R D W A R E

T H E M O B I L E W EB H A N D B O O K26

Around this time the phone is announced. Marketing copy is created

and disseminated through the usual PR channels. Samsung hopes the

pending release triggers a wave of interest.

Now Samsung starts negotiating with the operators that are going to

subsidize the phone. Bulk discounts, placement in the operator stores,

and marketing are discussed. Marketing is even more important in

unsubsidized countries, so plans are drawn up.

Then comes the actual production process in Samsung’s factories, with

prototypes and final versions. Test units are sent to strategic partners,

and after a final feedback round the phone is released. Samsung stores,

the operators, and the independent stores now get their phones. Usu-

ally, this doesn’t happen in all countries simultaneously, which is the

reason why some phones are not available throughout the world.

If Samsung sells units to operators, there’s an extra step: the operators

will want to put their own apps on the phone, and maybe customize

the start screen, home screen, or even the browser. (One operator once

went as far as setting the HTML bullets to a color that was not

even their brand color — and made sure web developers could not over-

ride it. One wonders what they were thinking.)

Now the main marketing campaign starts up. Samsung is dependent

on these in the unsubsidized countries. Although in subsidized coun-

tries the operators will make sure their customers pick the new phones

in their stores, some extra marketing never hurt anyone.

From inception to entrance in the market, the process takes at least six

months, and possibly as long as twelve. In general, the larger the com-

T H E M O B I L E W O R L D 27

pany is, the more bureaucracy, and the more people have to sign off

on the phone, which may cause delays. This gives an edge to smaller

device vendors, especially Chinese ones such as Xiaomi; because they

have faster release cycles they can react more quickly to new trends in

the market.

These six to twelve months assume an existing OS: if the OS is new

and untested, the process would take about six to twelve more months

because several software iterations are needed to get the OS right.

(That’s why you shouldn’t believe any news item that states a phone

with a new OS will be released within the next year. It won’t.)

What is a Smartphone?
Often, major new releases from Samsung and other long-established

device vendors are labeled “smartphones.” But what exactly is a smart-

phone? Why should we care?

The border between smartphone and non-smartphone is somewhat

arbitrary; it exists mostly due to historical accident and is unimportant

to web developers. We care whether a phone has a browser. Unfortu-

nately, market analysts care only whether it’s “smart.”

Up until about 2010 mobile phones were divided into basic phones,

feature phones, and smartphones. Basic phones can only do voice

calls and SMS. Smartphones were unofficially defined as phones that

allowed the user to install apps and that ran a recognizible OS. Feature

phones were everything in between: phones that offered more features

than basic phones, but fewer than smartphones. Specifically, it was not

possible for the user to install apps on a feature phone.

T H E M O B I L E W EB H A N D B O O K2 8

Today, the line between smartphones and feature phones is blurred, to

the point where almost every phone that can do more than voice and

SMS is a smartphone. Unfortunately, we’re still using the definitions

from 2010. Androids are smartphones because they were classified as

such in 2010, while S40 phones are feature phones for the same reason,

even though S40 phones allow the installation of apps nowadays and

compete with cheap Android devices.

When it comes to web development the line between smartphones and

feature phones is entirely arbitrary. Nokia S40 devices have a browser

and are used on a massive scale, especially in Africa, where consumers

don’t have any other internet-capable device. That makes it import-

ant to web developers targeting these regions, despite being a feature

phone — and despite not being counted at all in smartphone statistics.

This problem will solve itself. Smartphones become cheaper and cheap-

er, and eventually they’ll displace the entire feature phone category.

By then anything that can do more than just voice and SMS will be a

smartphone. For now, the arbitrary distinction between feature phone

and smartphone is one more problem that crops up when discussing

mobile market shares.

The Global Device Market
That brings us to the complex question of mobile market shares. What

kinds of devices are being sold, and how much of each type? How does

that affect mobile web development? I’ll provide some numbers, and

caveats, later on, but it turns out that these questions are surprisingly

hard to answer. It helps if we first discuss the global device market

qualitatively.

T H E M O B I L E W O R L D 2 9

First, a “duh” moment. In general, the more expensive phones are sold

in richer countries, and the cheaper ones in poorer countries. We’ve al-

ready encountered the reasons: in wealthier countries consumers have

more money and operators offer subsidies, making it easier to buy a

€600 phone; in poorer countries, people have less money and operators

don’t give subsidies.

Still, this is a generalization. Rich elites in poor countries have plenty

of money, so they can afford anything. Up-and-coming middle class

consumers might also buy expensive smartphones for status reasons

(sometimes in addition to the simpler phone they actually use in daily

life). Middle-class people from rich countries might not feel the need

for a smartphone and instead buy something cheaper.

Different countries may have different popular brands. While most of

the world watched in awe at Nokia’s decline and fall in 2010–2013, the

US remained cheerily indifferent because Nokia never made inroads in

the US market and wasn’t an established brand. Motorola is the exact

opposite: it’s still a power in the US, but irrelevant elsewhere. Despite

crashing globally, BlackBerry still has a following in Indonesia, and

retains about a 10% share of the British mobile browser market.

General rules don’t help us much further. The fundamental lesson is

that the so-called global device market doesn’t exist. Instead, there are

dozens of regional markets, and although you can aggregate the data

to create global statistics, they don’t tell you anything useful about

particular markets. There are too many differences in demographics,

culture, brand awareness, and disposable income to define general

worldwide rules for the mobile phone market.

T H E M O B I L E W EB H A N D B O O K3 0

Finding the Right Stats
One of the challenges of mobile statistic gathering is knowing what

kind of data is useful. Sales market shares are generally widely avail-

able because these numbers are important for investors and the stock

market. So we know roughly how many phones are sold annually, and

what the vendors’ market shares are.

Still, pure sales statistics are not all that important to us web develop-

ers. More important is the installed base share — what kind of phones

people have in their pockets. Where sales stats tell us which kinds of

phones consumers will buy in the near future, installed base stats tell

us what kind of phones they’ll fire up right now if they want to browse.

It’s all well and good to know that hardly any Android 2 devices are sold

any more in developed countries, but plenty of people still have an old

Android in their pockets. Sure, they’ll switch to Android 4 when they

buy a new phone, but that hasn’t actually happened yet. If they want to

surf now, they’ll use Android WebKit 2 — not the best of browsers. Is

your website ready for that?

The installed base of a phone or OS rises more slowly than its sales

market share. In the developed world, consumers generally buy a new

phone every two years, since that’s the length of the average operator

contract. Therefore, in any given year at least half of consumers won’t

buy a new phone but continue to use whatever they have. So if An-

droid takes 70% of yearly sales, at the end of that year only 35% of the

consumers will actually have a new Android phone in their pockets; 35%

more will likely switch to Android in the following year, but are using

something else right now. It’s this effect that installed base measures.

T H E M O B I L E W O R L D 31

But even installed base isn’t the real piece of data we want. As we’ll see

in a moment, Android’s sales share in 2013 was 78%, while its installed

base was about 65%. Still, its browsing market share was only about 35%.

The reasons for this discrepancy are hotly debated. Do Android users

genuinely browse less than iOS users? Are the sales numbers wrong? Is

there an error in the detection scripts?

Although this discussion is interesting in and of itself, in the end we web

developers don’t care about the entire phone market. We only need to

satisfy those people who actually use their devices for browsing. Thus,

the Android default browsers (Android WebKit and Chrome combined

— we’ll get back to this in the Android chapter) merit roughly as much

attention as iOS’s Safari, which is at about 25%. The fact that Android’s

sales and installed base share are much higher than iOS’s is irrelevant.

Even general reports of browser market shares are not all that import-

ant. In the end, what matters is which browsers people use to visit the

websites of your clients. So ask your clients for their access logs and

study the browser make-up. Aggregate statistics for an entire country

should be used only if your client doesn’t have any.

Who gathers the global statistics we’re about to see? The mobile phone

market is analyzed by several companies, but what I use below is the

aggregate data created by Tomi Ahonen, a mobile analyst and former Nokia

executive. He has a reputation for being a mobile stats hound, and it’s very

hard to find better statistics that don’t come directly from one of the analyst

houses. Also, Tomi doesn’t champion one OS or vendor over another, which

means his numbers are as honest as he can make them. These particular

numbers come from http://smashed.by/mwhb1 . The local statistics for OS

sales come from a different source indicated with the table.

T H E M O B I L E W EB H A N D B O O K3 2

Smartphone Sales Market Share
Phew. Those were the generic caveats, so we can finally look at some

numbers. Here are the market shares of the top 10 smartphone manu-

facturers in the world for 2013 compared with 2012:

Vendor Country OS 2013 2012

Samsung Korea Mostly Android 32% 31%

Apple US iOS 16% 20%

Huawei China Android 5% 5%

LG Korea Mostly Android 5% 4%

Lenovo China Android 5% 4%

ZTE China Android 4% 4%

Sony Japan Android 4% 5%

Coolpad China Android 4% *

Nokia Finland Windows Phone 3% 5%

HTC Taiwan Mostly Android 3% 5%

Others Android, BlackBerry 19% 17%

Phones sold
(in millions) 990 697

Market shares of top 10 smartphone vendors in 2012 and 2013

These numbers are less precise than you’d think. At the time of writing,

Samsung is not divulging its exact sales figures — just the total num-

ber of all phones it has sold. It’s up to analysts to split this number into

smartphones (which are counted) and feature phones (which aren’t).

T H E M O B I L E W O R L D 3 3

Speaking of not counting feature phones, Nokia’s S40 platform is en-

tirely absent in these numbers, even though the OS is relevant to web

developers because you can browse with it. So Nokia’s share of sold

web-enabled phones is much larger than the table shows.

Also, you will likely see a few vendors that aren’t active in your coun-

try at all. The Chinese vendors, in particular, sell most of their phones

in their domestic market and in developing countries, and are absent

from developed countries. That’s what I mean when I say there is no

global device market.

OS Sales Market Share
Still, we do get an impression of how many devices with a specific

operating system have been sold in 2013. It’s not a very exciting metric

— as you’d expect, Android easily takes the lead.

OS Creator Device vendors 2013 2012

Android Google
All but Apple, Nokia,

and BlackBerry
78% 65%

iOS Apple Apple 16% 20%

Windows
Phone

Microsoft Mostly Nokia 3% 2%

BlackBerry BlackBerry BlackBerry 2% 5%

Others 1% 7%

Sales market shares of mobile smartphone OSs in 2012 and 2013

bellonis
Hervorheben

T H E M O B I L E W EB H A N D B O O K3 4

The main question here is whether Android has reached its highest OS

market share, or if it will grow even beyond 78%. In other words, will

the other OSs shrink even more? When forced to guess I’d say Android

can grow a little more. Its growth is fueled mostly by cheap Android

phones (which are counted as smartphones) replacing older feature

phones (which are not counted as smartphones). So the combined mar-

ket share of the other three will shrink a bit more, I think. Then again, I

could be wrong, and even if I’m right my prediction is pretty vague.

Again, these are global statistics. They

don’t necessarily say anything about

your country. To illustrate that, here

are the OS sales market shares for four

countries and one continent for Q3

2013. (And why did the creators of the

table decide to compare a continent to

four countries? I don’t know.)

OS Italy France UK US Latin America

Android 72% 68% 58% 57% 73%

iOS 10% 15% 27% 36% 7%

Windows
Phone

14% 11% 11% 5% 6%

BlackBerry 2% 5% 3% 1% 5%

Others 2% 1% 1% 1% 9%

OS sales market shares in four countries and one continent

These numbers come

from WP Central, a Win-

dows Phone-oriented site

http://smashed.by/mwhb2

T H E M O B I L E W O R L D 3 5

Can you spot the differences? Android’s share fluctuates between 57%

and 73%. Windows Phone has a more-than-decent market share in this

set of statistics: from 5% to 14%. That’s rather higher than we’d expect

from the global numbers and the Windows-Phone-will-never-amount-

to-anything story. But is that a data error or are our expectations wrong?

These stats were published by a Windows Phone-centric website. That

does not mean the data are false, but it could be that the analyst and

the countries were cherry-picked to show Windows Phone successes

instead of failures. This doesn’t even need to be a conscious decision:

if you’re a Windows Phone fan you’re more likely to republish great

Windows Phone numbers than lousy ones.

Then again, it may be that these numbers give a good indication of

where Windows Phone is going, and our expectation that Microsoft’s

OS will never amount to anything is wrong. If a source doesn’t con-

form to your preconceptions, always wonder if your notions are wrong

rather than the data. Nobody said reading mobile statistics is easy.

OS Installed Base
Still, global numbers are the easiest to come by. That’s why the next

table is global again. It shows the installed base of the various OSs as

of 2013; that is, the number of smartphone users who currently use a

certain OS.

T H E M O B I L E W EB H A N D B O O K3 6

Installed base shares of mobile OSs in 2012 and 2013

As you can see, there are still some people carrying Symbian phones,

and that’s why the time to ditch Symbian WebKit forever hasn’t quite

arrived yet. Other than that, the table contains few surprises.

Changes in the Device Market
The mobile market is changing very rapidly. If you compare 2009 to

2013, many leading companies, such as Nokia, HTC, and BlackBerry,

saw their market shares dwindle to below 5%, while Samsung, which

was disastrously behind in 2009, bestrides like a giant the part of the

market that Apple has left unclaimed.

Although it’s very hard to make solid predictions, the market will

probably change again in the next few years. Basically, the rule is that

any device vendor that makes a loss will fall out of the race and may

be bought by another player. This has already happened to Motorola

(Google) and Nokia (Microsoft), and it’s likely that it will also happen to

OS 2013 2012

Android 66% 53%

iOS 20% 19%

Symbian 5% 15%

BlackBerry 4% 8%

Windows Phone 3% 2%

Others 2% 3%

T H E M O B I L E W O R L D 37

BlackBerry and HTC. Although LG and Sony don’t have healthy bottom

lines either, they are parts of much larger consortia that may be willing

to pay the price of staying in the market. (Entering the market is a lot

more expensive than staying in it, despite losses.)

Who’s going to acquire them? Motorola’s fate gives us a clue. Google

sold it to Lenovo, the second-largest phone vendor in China (after

Samsung). It’s clear that through Motorola, Lenovo hopes to enter for-

eign markets. In fact, many Chinese companies hope the same. Hua-

wei, Xiaomi, ZTE, Meizu, and others want to become household names

outside China. That’s already happening in the developing world, but

they want to conquer the developed world as well. So it’s likely that

most of the new players will be Chinese.

Another question is whether more not-really-mobile companies will

follow Microsoft’s example and buy a device vendor. There have been

persistent rumors about Facebook, though I personally believe that

it knows it shouldn’t go into the hardware business — it’s a service

provider, and services will trump hardware in years to come. Service

providers shouldn’t move down-stack to hardware, and neither should

OS vendors. They are already in the best part of the market, and own-

ing device vendors won’t help them make more money. I can believe in

hardware makers being acquired by other hardware makers, but not by

anyone else. (And yes, Microsoft is an exception here.)

I’ll leave it at that — the market is too volatile to risk specific predic-

tions. I hope this general sketch gives you enough pointers to see the

patterns behind future deals and trends in the hardware market.

T H E M O B I L E W EB H A N D B O O K3 8

OS Vendors And Software

Any phone, even a basic one, needs an OS that makes sure the right

things happen when the user presses a button or touches the screen.

(Please take a moment to recover from this stunning revelation.)

Since 2008, the quality of the OS (the software layer) has become more

important than the quality of the device (the hardware layer). Not all OS

vendors understood this — Nokia and BlackBerry, in particular, were

too late in adapting to the new order, and suffered as a result. Then

again, HTC adapted just fine and is also suffering. A good OS is a pre-

requisite for success, but not a guarantee.

Currently, there are two important OSs: Android and iOS. Still, it isn’t

true that mobile is evolving into a bipolar system. First of all, other OSs

still exist — we’ll encounter six of them in a moment. Some of them

may fail, but we cannot assume that all of them will. Also, the Android

ecosystem has grown so huge that it may separate into several branch-

es. We’ll get back to that later.

It is unlikely that we’ll see more OSs than the eight described below.

There may be some adjustments in market shares, but nobody in their

right mind will start to build a brand-new OS from scratch. The time-

to-market is too long, and nobody is interested in yet another OS.

S O F T W A R EN E T W O R K S E R V I C E S C O N S U M E RH A R D W A R E

T H E M O B I L E W O R L D 3 9

Incumbents
Let’s briefly discuss the eight mobile OSs, starting with the incumbents

that actually have market share. We’ll leave Android to its own chapter

because it is so complicated, and continue with the rest.

iOS is simple: Apple holds absolute power and combines hardware and

software to create one of the world’s most desirable devices. Also, as we

saw earlier, both consumers and developers love what Apple has to of-

fer. The only current drawback of iOS is that Apple refuses to produce

mid-range phones in the €150–250 class. By now it’s clear that this is

not going to change, and as a result Apple’s smartphone market share

will shrink as more and more mid-range Android phones, which are

counted as smartphones, will replace feature phones. Still, the current

15% is enough to maintain a healthy ecosystem, especially since the

average Apple user is affluent and willing to spend money, and Apple

earns rather more than half of the profit in the mobile market.

The BlackBerry ecosystem shares the premise of hardware and soft-

ware created by one company. Unfortunately, BlackBerry ignored the

iPhone revolution for too long, and by the time it changed its mind it

was too late. BlackBerry 10 is a perfectly fine modern mobile OS, but it

was released well after former BlackBerry users had gone over to iOS

or Android, and it suffers from a lack of apps. It’s likely that BB10 was

released too late to help BlackBerry hang on to a piece of the market.

Windows Phone differs from iOS and BlackBerry in that Microsoft li-

censes it to any interested device vendor. However, Microsoft has strict

rules for the hardware (available memory, processor speed, that sort

of thing), and vendors are not allowed to change the user interface be-

yond a few colors. Thus, it is hard to distinguish yourself as a Windows

T H E M O B I L E W EB H A N D B O O K4 0

Phone vendor — especially when compared to Android. Meanwhile,

the Microsoft-Nokia deal has made sure that only Nokia remains an

important Windows Phone seller. The OS isn’t exactly dead, but it

needs a major victory in order to capture more than a few percent of

the market. Whether the acquisition of Nokia will give

Microsoft such a victory is unclear at the time of writing.

Nokia’s S40 OS, though not officially “smart,” continues to hold a fat

slice of the developing world market, although it’s on the defensive

against Android-based competitors. S40 is clearly not in the same

league as the others, but it has the saving grace of being cheap.

Microsoft announced at the time of writing that S40 would be phased

out, but it’s still popular in poorer parts of the world, where people

don’t have the money to buy new phones every two years. That makes

it likely that S40 devices will continue to be used for a while.

Challengers
Samsung has a history of creating lines of phones that run not on

Android but on an OS created in-house. From 2010–2012 the Samsung

Wave devices were powered by bada, and when bada folded (for un-

clear, probably political, reasons) Samsung announced that it would

create the new Tizen web-based OS together with Intel. bada and

Tizen are Samsung’s insurance against Google’s future plans with

Android. If Samsung doesn’t like these plans it can always switch from

Android to its own OS — or threaten to do so. Meanwhile, the new OS

can be tested by a small segment of the Samsung market.

This all sounds great in theory. The problem is that the first Tizen

phones have been announced, canceled, reannounced, and again

canceled. Right now it is unclear whether Tizen will ever amount to

T H E M O B I L E W O R L D 41

anything, though a watch running the OS has been released. If, against

all odds, Tizen enters the mobile market, it will likely be a hit, since

Samsung will use its considerable corporate muscle to make it a hit.

So don’t write off Tizen quite yet.

Before Nokia decided on Windows Phone it was creating its own new op-

erating system, MeeGo. Once the Microsoft deal went through, develop-

ment ceased, but a small company of ex-Nokia people called Jolla decided

to continue the work and create a phone based on MeeGo, now renamed

Sailfish. At the time of writing it is only available in Finland and China.

I have not seen it, so I’m not able to judge its quality. It is possible that

Sailfish will become a new player — ex-Nokia people usually have good

operator relations, and that counts in the richer parts of the world.

Of the desktop browser vendors, Mozilla was the last to enter the mobile

market. In addition to a browser for Android, it decided to create its

own web-based operating system, Firefox OS. Mozilla aimed for the

low-end market, struck deals with operators and device vendors, and

went to work. Meanwhile, Firefox OS phones are on sale in Latin Amer-

ica especially, and more releases are planned. So far the result has been

modest, but growing a new OS in the face of cheap Android opposition

is not easy. It’ll probably take until 2015 before we see whether Firefox

OS is going to be a major challenger.

The Web as an OS
In 2009, Palm astonished the world by announcing it was going to use

the web as its next platform. Native apps would be written in HTML,

CSS, and JavaScript, and the OS would be called WebOS. The plan was

great; the execution lousy. Palm didn’t bother to reach out to web devel-

opers, and the marketing was a disaster. WebOS disappeared silently.

T H E M O B I L E W EB H A N D B O O K42

Despite this initial failure, the web may have a future as an OS. In fact,

this is the whole premise Firefox OS is based on, while Tizen is moving

in the same direction, and BlackBerry 10 allows HTML5 apps as well. In

all cases, you can submit an app created in HTML, CSS, and JavaScript

to the app store and have it behave as a native app when it comes to

installing and such.

You may have noticed that the platforms supporting HTML5 apps

are minority ones. Android and iOS have no HTML5 app capability to

speak of — even Chrome apps don’t work on Android at the time of

writing. The Android and iOS native app ecosystems are thriving, and

they don’t need HTML5.

Thus, HTML5 apps are weapons in the hands of the losers or chal-

lengers in the mobile world. They need a unique selling point, and yet

another native app system is not going to cut it, so why not the web?

It makes sense from their perspective. Still, I think it’s not enough —

these platforms will also need the operator relations necessary to

bring their devices to the masses. HTML5 alone will not save them.

This whirlwind tour of the mobile world has given us a clearer idea of

what the differences with the traditional desktop world are. However,

so far we haven’t found any practical, technical information for web

developers. Also, we haven’t yet discussed the part of the software layer

that’s most important to us web developers: the browsers. That’s why

they are the topic of the next chapter.

Chapter 2

Browsers

B R O W S ER S 45

Chapter 2

Browsers
If you’re used to the simple five-browser ecosystem that exists on the

desktop, you’re in for a surprise in the mobile market. So far, I have

identified about 30 mobile browsers, ranging from lousy to great. Not

all of these browsers are equally important: in fact, about 20 of them

are somewhat marginal. And just like on desktop, there may be differ-

ences between two versions of the same browser.

The Google browsers, Android WebKit and Chrome, come in several

flavors, and each flavor may have several versions. In fact, the Android

browser situation is so complicated that I’m going to give it an entire

chapter of its own. The current chapter mostly ignores Android and in-

stead talks about the other platforms, in particular iOS, as well as some

general principles.

You will find no compatibility information here: by the time the book is

printed, it would be outdated. You should turn to the companion site at

http://quirksmode.org/mobilewebhandbook for details on the differences

between the browsers.

T H E M O B I L E W EB H A N D B O O K4 6

Browser Types
There are four browser types on mobile: default browsers, download-

able browsers, proxy browsers, and WebViews. These categories over-

lap in places: a browser does not necessarily belong to just one category.

For instance, the proxy browser Opera Mini is downloaded by many

users, but is the default browser on some feature phones.

Default Browsers
Every phone has a default browser; that is, a browser that’s part of the

firmware, usually developed by the OS vendor. Thus Safari, developed

by Apple, is the default browser for iOS; and IE, developed by Microsoft,

is the default browser for Windows Phone. The table below summarizes

the default browsers of the platforms.

Sales market shares of mobile OSs in 2012 and 2013

Platform Default browsers Remarks

iOS Safari

Android Android WebKit or Chrome
Several flavors of both

(see next chapter)

BlackBerry BlackBerry WebKit

Windows Phone IE

Symbian Symbian WebKit

Firefox OS Firefox

Sailfish no name yet Gecko-based

S40
S40 WebKit on older ones; Xpress

on Asha.
Xpress is a Gecko-based

proxy browser

Other feature phones
Varies: Opera Mini, NetFront, UC

Mini, or others
Opera Mini and UC Mini

are proxy browsers.

B R O W S ER S 47

Most default browsers are tightly integrated with the underlying OS,

to the point where it is not possible to update the browser separately.

Thus, in order to get a new Safari version you have to update iOS; the

same goes for IE and Windows Phone. This causes default browsers to

develop more slowly than other types of browsers, which could mean

in future we have to go through another period where one old, bad

default browser holds back the entire mobile web, just as IE6 held back

the desktop web. Fingers crossed.

Incidentally, device vendors frequently refuse to give their default

browsers names. That’s why I use the unimaginative but fairly clear

“[Platform] WebKit” when necessary, and my compatibility tables are

riddled with Android WebKit, BlackBerry WebKit, Symbian WebKit,

and more.

Downloadable Browsers
There are a lot of browsers users can download and install for them-

selves. Opera, Firefox, Chrome, and UC are a few important ones. In

practice, this is only possible on Android, since installing other render-

ing engines is not allowed on iOS, and no vendor has yet produced a

downloadable browser for the small platforms.

One advantage downloadable browsers have over default browsers is

that it’s possible to update them whenever a new version is available.

The latest and greatest features usually land in downloadable browsers

first, which is one of the reason web developers tend to like Chrome,

Opera, and Firefox. We web developers are not like regular consumers

in that respect, though.

T H E M O B I L E W EB H A N D B O O K4 8

It appears that there is a difference between the Western developed na-

tions and the developed nations of east Asia. In the West, few consum-

ers bother to install a different browser — or even know it’s possible. In

Asia, consumers do download alternative browsers, such as UC or QQ

in China, and Puffin in Korea. A common reason is that these browsers

offer better integration with local social networks. Asian browser sta-

tistics often show downloadable browsers that rarely occur in the West.

What’s the point of creating a downloadable browser? The answer is a

combination of becoming or staying relevant on mobile, and making

money. These two goals are connected: the more relevant you are, the

more money you make. Browsers want more market share, and the

best way of getting that is to be included as a default browser on some

device or another. Before it comes to that, though, these browsers have

to show their worth by making a free version available for anyone to

try. We’ll get back to making money with browsers later in this chapter.

WebViews
A WebView is an OS’s browsing interface for native apps. For instance,

a Twitter client may call on the platform’s WebView to show a webpage

when the user clicks on a link in their feed. A game’s help pages may be

webpages, in which case the game app uses the platform’s WebView to

display them.

Apple doesn’t allow the installation of other rendering engines on iOS

devices. Therefore, other browsers wanting to move to iOS are forced

to use Apple’s WebView. This goes for Chrome on iOS, and also for

Opera Coast.

B R O W S ER S 49

In general, WebViews are separate programs that use many low-level

components (such as rendering engines) of the default browser, but

may differ in other respects. Testing on WebViews may therefore be a

good idea if you expect your pages to run in them.

Proxy Browsers
Then there are the proxy browsers. Their rendering engines, respon-

sible for parsing and executing HTML, CSS, and JavaScript, are found

not on the device but on a remote server. They do this to save their

users money.

The opposite of a proxy browser is a full browser, and it works as

we expect a browser to. When the user requests a page, the browser

fetches the HTML, CSS, JavaScript and other assets via HTTP, and once

it has everything, it renders and shows the page. All of these steps take

place on the client, and take up memory, processor time, and battery life.

Proxy browsers are different:

1. The user requests a page. They send not a normal HTTP request,

but a special request to a special proxy server over an encrypted

connection.

2. This proxy server makes the normal HTTP request to the web

server the user wants to access. It requests the HTML as well as

all assets, such as CSS, JavaScript, images and so on.

3. The proxy server contains a rendering engine, which renders the

page as usual.

T H E M O B I L E W EB H A N D B O O K5 0

4. The proxy server then compresses the rendered page into a kind

of image of the website: think of it as a PDF or an image map. It

has hotspots for links, and the user can also select text and zoom

a bit.

5. The proxy server sends this file to the client, again over an

encrypted connection.

6. The client shows the file to the user. If the user taps on links

or does something that requires code execution, the process is

repeated.

Opera took the lead in the proxy browsing world primarily because it

was the first to see the opportunities and enter the market. Nowadays,

though, serious competition is available. There are three important

proxy browsers:

1. Opera Mini: used throughout the world, especially in developing

countries on low-end devices. Based on Presto at the time of

writing, although Opera will eventually switch to Blink.

2. UC Mini: used mainly in China but branching out powerfully

across the world. This browser will become more important as

time goes by. Based on Gecko.

3. Nokia Xpress: the default browser for Nokia’s Asha (S40) low-end

phones, and also available for Windows Phone. Based on Gecko.

Now that the Asha line is discontinued by Microsoft, it will

gradually lose its market share.

B R O W S ER S 51

Advantage: Cheap
Proxy browsers primarily serve to save the user money. Because all the

proxy client has to do is show static files, allow for clicks or taps on

links, and generate a simple UI, it’s fairly light and able to run even on

low-spec phones. Users do not have to buy an expensive smartphone in

order to access the web.

Besides, all the client receives is a highly compressed file, which is

much lighter than raw HTML, CSS, JavaScript and image files, and it

uses only a single request and response. This saves a lot of mobile data

traffic — Opera claims up to 90%. Also, this will work even on older

networks, which is important to developing-world operators that don’t

want to spend money on upgrading their entire network.

Thus, proxy browsers serve to make the web accessible even to low-

income users who can’t afford a desktop computer or a smartphone.

Unsurprisingly, they’re especially popular in the developing world,

while being marginal in developed countries. Still, even affluent smart-

phone users on excellent connections will notice a distinct increase in

speed when they switch to a proxy browser.

Disadvantage: No Client-Side Interactivity
There’s a disadvantage to proxy browsing, too: no client-side interactiv-

ity. Proxy browsers support JavaScript, but every time the user causes

a JavaScript event (by clicking on an Ajax link or something similar),

the client sends a request back to the server for instructions. The server

executes the script, fetches new assets if necessary and sends back the

updated page, which, as far as the client is concerned, is a completely

new page.

T H E M O B I L E W EB H A N D B O O K52

It’s important to realize that this lack of client-side interactivity is a

feature, and not a bug. By giving up client-side interactivity, users save

themselves a lot of money. Executing JavaScript costs users money, and

some prefer not to pay the price.

Working with Proxy Browsers
You must learn to work with proxy browsers. Download Opera Mini to

your iOS or Android device now and start testing in it. A proxy browser

doesn’t quite work like the browsers you’re accustomed to, and many

users will get their first taste of the web via a proxy browser. Having at

least some experience with them is mandatory.

The problem is not in the HTML or CSS — they work pretty much

as you’d expect. It’s in the JavaScript that you’ll encounter the most

serious problems. Any time a proxy browser encounters anything

dynamic, it has to go back to the server and ask for new instructions.

Thus, there’s always a lag of a second or more between activation and

execution.

Although proxy browsers support JavaScript, most of them disallow

certain events. For instance, if you have an onscroll event handler,

it should fire whenever the user scrolls. But in a proxy browser, that

would mean making a server request with every few pixels of scrolling,

which would make the page completely unusable. Therefore, proxy

browsers disable the scroll event. The same goes for the mouse and

touch events.

B R O W S ER S 5 3

As a rule of thumb, assume that only events that clearly show the

user’s intent to load new data will work in proxy browsers. In addition,

mouseover is widely supported because so many websites depend

on it, and load and unload because they will be processed on the server

anyway. You can expect click, change, focus, submit and the like

to work, but mouseout, the touch events, the key events, resize and

scroll will not work.

I advise you to keep it simple and concentrate on the click event,

which always works everywhere. Add submit if you’re working with

forms. That’s it, though — do not expect other events to work on

proxy browsers.

Hybrid Browsers
Since saving bandwidth is such an

obviously excellent idea on mobile,

the true proxy browsers have been

joined by hybrid browsers: brows-

ers that can function either as full

or as proxy browsers. In most of

them you can switch bandwidth

saving on and off. They include

Amazon Silk, Puffin, Opera Mo-

bile, and Chrome. Unfortunately

the details of their hybrid behavior

vary a lot, and it’s hard to give

general rules.

Exactly how hybrid proxy browsers

divide up the work between client and

server depends on the browser and the

settings. See the Silk description at

http://smashed.by/silk; the Chrome

data compression proxy description at

http://smashed.by/data-compression;

and for more information on Opera

Turbo http://smashed.by/turbo.

I have not been able to locate similar

instructions for Puffin.

T H E M O B I L E W EB H A N D B O O K5 4

The iOS Browser Situation
Now that we know the various browser types, we can understand the

iOS browser situation. Remember the crucial fact: Apple does not allow

the installation of another rendering engine.

1. The iOS default browser is Safari. Duh.

2. In addition, iOS has a WebView for native apps that need it. Up

to and including iOS7 it was slightly different from Safari, but

at the time of writing the promise is that these differences will

disappear in iOS8.

3. Chrome on iOS may not install its Blink rendering engine, and

is therefore forced to use the Apple WebView. The same goes for

Opera Coast.

4. Opera Mini, however, neatly evades Apple’s restrictions because

its rendering engine resides on a server. Installing the Opera Mini

client is allowed, and therefore this browser is available on iOS.

In other words, the only non-Safari iOS browsers that it makes sense

to test in are the proxy browsers. At the time of writing there’s no other

proxy browser for iOS but Opera Mini, but that might change.

In particular, Chrome on iOS tests are relatively useless. Although the

Chrome app offers you integration with your Google account, when

it comes to actually rendering webpages it must use Apple’s WebView.

Thus, although you can test on Chrome for iOS if you feel like it, this

does not tell you anything about the real Chrome on Android, which is

a completely different browser.

B R O W S ER S 5 5

The Browser Situation On Other Platforms
The other platforms are even simpler to understand than iOS. They

have their own default browsers, and usually Opera Mini is also avail-

able. Although in general the installation of other rendering engines is

allowed, no vendor has yet decided to build a new browser for Black-

Berry, Windows Phone, or any of the others.

Rendering Engines
Every browser has a rendering engine that is responsible for the inter-

pretation of HTML, CSS, and the DOM parts of JavaScript. Just like on

desktop, there are four important rendering engines on mobile: Gecko,

Trident, WebKit, and Blink. In addition, Opera’s old Presto engine lives

on in Opera Mini for now.

Until about 2010 BlackBerry, NetFront, UC, and a few other browsers

had their own proprietary rendering engines, but with the advent of

mobile browsing as core platform functionality it became clear that

these engines were inferior to the desktop ones, especially in JavaScript

and performance. Therefore all proprietary mobile rendering engines

were replaced by desktop ones.

Most browser vendors decided to use WebKit. Trident and Presto, back

when it existed, were proprietary, and so not an option. As for Gecko,

its use beyond Firefox is restricted to UC Mini and several Nokia-de-

scended browsers. The lack of adoption is probably caused by the fact

that back in 2009, when most vendors took these decisions, Gecko was

still far too heavy for mobile processors and memory constraints.

T H E M O B I L E W EB H A N D B O O K5 6

Meanwhile Mozilla has streamlined its engine in order to create

Firefox Mobile, but that change came too late to profit from the initial

wave of rendering engine replacements.

Google forked Blink from WebKit in 2013, when the wave of replace-

ments was over. Nowadays it’s becoming an option for Android ven-

dors. We’ll go into that in the next chapter.

There Is No WebKit on Mobile
So many mobile browsers use WebKit as their rendering engine that

it’s more efficient to list the ones that do not:

• IE Mobile uses Trident.

• Opera Mini uses Presto, but will eventually replace it with Blink.

• The Chrome browsers use Blink. We’ll get back to them in the

next chapter.

• Firefox Mobile and Firefox OS use Gecko.

• UC Mini, Nokia Xpress, and the default browser on the Sailfish

OS by Jolla also use Gecko.

Any browser not mentioned above uses WebKit. At first sight, the fact

that so many browsers use WebKit seems like a powerful aid to web

developers. Unfortunately, if a browser uses WebKit it does not mean

it’s the same as any other WebKit-based browser. In fact, there are con-

siderable differences between them.

WebKit is a rendering engine, not a browser. If you hand it HTML, CSS,

JavaScript, and images, it will deliver a rendered page. However, it does

not contain the modules necessary to request the assets or to actually

show the rendered page on the phone’s screen. It depends on the OS

B R O W S ER S 5 7

for interfacing with the keyboard, mouse, and touchscreen. Platform

owners have to provide all these functionalities.

WebKit provides support for hardware-accelerated animations but does

not contain the modules that communicate with the GPU and that

make sure that hardware animations actually show up on the screen.

If you want modern form fields such as <input type="date">,

you must write the date interface yourself. WebKit includes Apple’s

JavaScriptCore as the default JavaScript engine, but you may decide to

switch to another, such as Google’s V8. Finally, you may use a different

WebKit version than the other guy, but even if you don’t, two browsers

that both use WebKit 537 may be quite different.

So, there is no WebKit on mobile. A lot of browsers use more or less

the same rendering engine but differ a lot in their details. Testing your

website in all individual WebKit-based browsers is best. If it works in

Safari for iOS, it will not necessarily work in BlackBerry WebKit, or

Android WebKit, or Obigo, or Symbian WebKit, or Dolphin for Android,

or… well, you get the point.

Making Money From A Browser
Why do people make browsers? There are two fundamental reasons:

providing your platform with one, and making money. Any smart-

phone needs a browser. Therefore Apple, Google, Microsoft, Samsung,

BlackBerry and others must provide one. Simple.

However, other vendors want to make money with their browsers —

even if only enough to pay their engineers. There are three business

models for making money from browsers:

T H E M O B I L E W EB H A N D B O O K5 8

1. Selling your company (and browser).

2. Selling licenses for your browser.

3. Search engine deals.

When I started on mobile back in 2009, I tested all the downloadable

browsers I could find. Most of them were pretty crappy, but there was

one notable exception: the Iris browser for Windows Mobile created

by a small Canadian company called Torch Mobile. Several months

later BlackBerry acquired the company to build a new WebKit-based

browser for its platform, netting the founders and engineers a nice bit

of money.

This doesn’t happen very often. I had the feeling that back in 2012 the

small Californian Dolphin browser groomed itself for acquisition by

Facebook, but nothing came of it. Not all that many companies are

interested in buying a browser, it seems, and the ones that are have

already done so.

Selling licences is a more forward-thinking business model. Opera,

especially, makes money from Mini licenses sold to operators, mostly

for use on feature phones without a good default browser. The opera-

tor gets a customized Opera Mini build for their devices without the

Opera logo. This is good for the operators, since browsing users spend

more money, but the operators don’t have to spend money on creating

their own browsers. I assume UC has similar deals in place.

Finally, all browsers have deals with all search engines in which they

get a small fee every time a browser user uses the search engine. These

deals are shrouded in mystery. The fact that they exist is well known,

but the details, especially the financial ones, are secret and will likely

B R O W S ER S 59

remain so. All browsers do it: it’s the easiest way for a browser vendor

to make money. The search engine deals are not restricted to down-

loadable browsers — default browsers do the same, both on desktop

and on mobile. The deals are more vital for downloadable browsers,

though, which usually don’t have other sources of income or the back-

ing of a wealthy corporation.

The search engine deals become more valuable as more people use

your browser. It’s in the interest of downloadable browser vendors to

encourage as many people as possible to use them. Whether they will

succeed is an open question.

Statistics
It’s time to take a look at statistics again. The best browser market

share stats are the ones that come from your client’s log files. Study

them to find out what kinds of phones are used to visit their website.

Be aware that users of some browsers might not be able to use the

website and so might be underrepresented. I usually look at statistics

for the homepage or another important landing page and compare

them with a few other pages. If a certain mobile browser is visiting the

homepage in decent numbers but is nowhere to be seen elsewhere on

the website, users of that browser are likely encountering a problem

that you must solve.

Finding and using general worldwide mobile browser market shares is

fairly hard. What we need are the mobile browser statistics of a first-

rank website such as Google or Yahoo. Unfortunately, these companies

keep their statistics a secret. As we saw, search engine vendors pay

browser vendors a small commission for every query they send, and

T H E M O B I L E W EB H A N D B O O K6 0

they want to hide these vital statistics from their competitors (and

from browser vendors). That’s why they do not share the browser

make-up of their homepage hits.

So, we’re reduced to using analytics services that gather these statistics

from their clients and share them freely. Unfortunately, these services

have a self-selecting bias because site owners (or web designers) have

to sign up for them and install a counter script. Thus, even though

these services present global data, it comes from a specific subset of

websites. I encourage you to sign up the sites you make to one of these

services and make the data a little more representative.

The choice is yours, then: either use the statistics, knowing they’re

incomplete and biased; or use none at all. To me, any data is better than

no data, but your mileage may vary. At the time of writing, I know of

three such services, and I encourage you to compare them.

• StatCounter (http://smashed.by/statcount)

• NetMarketShare (http://smashed.by/netms)

• Akamai (http://smashed.by/akamai)

Personally, I prefer StatCounter because NetMarketShare puts tablets

and mobile devices in one category, and at the time of writing Akamai’s

“New Features”, which comprise most of the mobile data, have serious

and persistent interface problems. (You should try it, though. Maybe

the problems have been solved by the time you read this.) So I used

StatCounter for the data below.

B R O W S ER S 61

Don’t stare yourself blind on tiny differences that are statistically

meaningless. What you’re after with global stats is the broad picture

of who wins and who loses. Chrome is a clear winner (but see the next

chapter), while BlackBerry, Nokia, and Opera lose.

One note: what is “Opera”? Opera Mini, or the full Opera Mobile

browser? Unfortunately, StatCounter does not give this information. I

assume that 99% consists of Opera Mini, because that would align well

with the fact that Opera is mostly present in developing countries, but

that’s a guess on my part and I may be wrong.

Browser Q2 2014 Q2 2013 Q2 2012

Android
WebKit

25% 30% 22%

Safari 23% 26% 24%

Chrome 18% 3% -

Opera 12% 16% 22%

UC 10% 9% 8%

Nokia 4% 7% 11%

BlackBerry 2% 3% 5%

NetFront 2% 2% 4%

IE 2% 1% 1%

Other 2% 3% 3%

StatCounter: Global mobile browser stats, Q2 of three years

T H E M O B I L E W EB H A N D B O O K6 2

Still, all this information doesn’t tell you which browsers will visit your

client’s site. If you don’t have specific stats available, take a look at the

stats for your country. They can be very, very different from the global

stats. See the next table, for instance.

Browser US UK India Brazil

Android 21% 17% 12% 31%

Safari 50% 46% 1% 14%

Chrome 21% 19% 4% 37%

Opera 1% 4% 25% 6%

UC 2% 1% 34% 1%

Nokia - - 10% 3%

BlackBerry 1% 8% - -

NetFront - - 7% -

IE 2% 3% 1% 4%

Firefox - - - 1%

Other 2% 2% 6% 3%

StatCounter: Mobile browser stats of four countries, Q2 2014

Can you spot the differences? Safari rules in the developed West, but

not elsewhere. BlackBerry is wiped out, except in the UK. UC is the

largest browser in India, while NetFront also retains part of the market.

IE and Chrome are more successful in Brazil than in other countries.

B R O W S ER S 6 3

As you can see, there is no global mobile browser market — just a col-

lection of local ones.

Although your country’s stats are much more useful than global ones,

there might still be factors affecting your site that influence the exact

browser make-up. But if you don’t have stats for that site, you’re forced

to use country stats instead.

In any case, you should now have some idea of which browsers you

need or want to target, even if it’s only elaborate guesswork. This will

inform your device purchases.

Now that we’ve gone through the simple stuff it’s time to look at the

more complicated part of the story: Android.

T H E M O B I L E W EB H A N D B O O K6 4

Chapter 3

Android

A N D R O I D 6 7

Chapter 3

Android
As we saw in the Mobile World chapter, nearly four out of five smart-

phones sold are Androids. Thus Android is the most important mobile

OS, but that alone is not the reason it is the sole OS to get its own chapter.

The problem web developers face on Android is that the default browser

situation is complicated by several factors absent on other platforms:

1. The old default browser, Android WebKit, is in the process of

being replaced by Chrome.

2. Both Android WebKit and Chrome come in several flavors, and

even if they have the same version numbers one flavor is not

necessarily equal to another.

In order to understand why, we have to take a quick look at Android

itself before starting on the browsers.

Although this chapter frequently refers to subtle differences between

browsers it contains hardly any examples of those differences. As usual,

the detailed browser notes can be found at the companion site:

http://quirksmode.org/mobilewebhandbook.

T H E M O B I L E W EB H A N D B O O K6 8

Structure and purpose
Google’s purpose with Android is to increase the use of its own services.

By offering a modern smartphone OS with its own apps and search

engine, Google entices more people to use its services, which leads to

better data, which leads to more effectively targeted advertising, which

leads to more profit. And Google gets a fat slice of the mobile market,

which can’t hurt.

It made economic sense for Google to provide Android free of charge.

In 2008–9, this offer fell on fertile ground. The mobile world was shak-

en up by the iPhone, and most companies understood they needed a

comparable operating system in order to remain relevant in the smart-

phone business. The Asian vendors, as well as Motorola, were quick to

take Google up on this offer. (Nokia and BlackBerry thought they could

keep abreast of the market on their own. They were wrong.)

Differentiation
Despite this huge uptake, device vendors had a problem. If consumers

can choose between a Samsung Android, an HTC Android, a Sony An-

droid, and a Motorola Android that are all exactly the same, why would

they care whether they buy one brand or another? Device vendors

wanted to differentiate their devices in the eyes of the consumers.

Since Google wanted them all to adopt Android, it gave (and gives)

ample opportunity to differentiate. Device vendors do so mainly by

creating feature-rich Android user interfaces: Samsung TouchWiz,

HTC Sense, MotoBlur, and all the rest of the UI layers. They’re also free

to experiment with new features — we’ll encounter Samsung’s take on

touchscreen hover in the CSS chapter.

A N D R O I D 6 9

For reasons of differentiation, device

vendors make changes in the default

browsers. This is the main reason that

Android is more complicated than the

other platforms. Even if an HTC and

an LG device both run Android WebKit

4.1.1, there will be differences between

these two browsers. This is a deliberate

attempt at differentiation, and not a bug

or oversight.

For instance, one difference between

HTC Android WebKit and all the others

is that HTC always implements what I

call zoom reflow. When you zoom in to

less than the width of a line, most brows-

ers just show part of the line, requiring

you to pan horizontally in order to read it.

HTC Android WebKit, however, changes

the text width so that it fits in the screen.

Apparently HTC doesn’t mind the associ-

ated processor and battery cost.

Do consumers care? Once, when I was

talking about Android browsers in a

workshop, an attendee volunteered a

story about zoom reflow on his old HTC.

He didn’t know exactly what was going

on or that it was HTC-specific, but he

complained that his new Samsung didn’t

If you zoom in beyond the width of a

line, most browsers show you only part

of the line, and you have to pan horizon-

tally in order to read it.

HTC Android WebKit reflows the text so

that it fits on the screen.

T H E M O B I L E W EB H A N D B O O K70

do it. This is what differentiation is all about: “Oh, my new Samsung

doesn’t do this cool thing my old HTC did. Better go back to HTC next

time.” One anecdote does not constitute a robust data set, of course, but

it shows what differentiation aims to achieve.

Despite the necessity of giving device vendors the opportunity to

differentiate, Google has always been concerned with the unity of the

Android platform. App and web developers generally support Google

here, since less differentiation makes their lives easier, but device ven-

dors oppose it. It’s useful to read Android news through the lens of the

tension between differentiation and unification. Once you figure out

if the news item would lead to more or less differentiation, you usually

understand who supports it and who opposes it.

Android Updates
The glacial pace of distributing new

Android versions has become some-

thing of a bad joke. Consumers and

developers think that as soon as Google

announces a new version, their phones

will be updated in a matter of weeks.

Instead, it is more likely to take six to

twelve months, if it happens at all. The

reason, again, is differentiation. Device

vendors have to test their UI layers and

other changes against the new Android

version — and when that’s done opera-

tors have to do the same.

HTC created an excellent

infographic that shows

all the steps an Android

upgrade has to go through

before landing on a con-

sumer’s phone, and I based

this section mainly on that

information. See it at

http://smashed.by/htcupdate

A N D R O I D 71

Say you have an HTC Android phone bought at (and locked by) Voda-

fone, and Google releases a new Android version. The first question is

whether the phone can handle the new version at all. Maybe its hard-

ware is too old, and in that case HTC isn’t even going to try to update it.

Let’s say the hardware is good enough. Both HTC and the chipset

vendor must now make sure the new version will actually work. They

test the new Android version, and if they agree it’ll work they continue

with the next step.

The chipset vendor creates new drivers and optimizes the new version

for the specific chip in the phone. Meanwhile, HTC integrates the new

version with Sense, its UX layer, and the HTC apps on the device. If

that works, HTC can move straight to testing for its own, unlocked

devices.

HTC delivers the new Android plus its own changes to the operators,

which have to go through the same testing process for their apps and

additions. Only when the operators give the green light can the process

continue. This is the reason locked devices are generally updated later

than unlocked ones. It also explains why sometimes some operators

accept the new version but others don’t.

Then follows testing, where HTC and the operators test the new ver-

sion, find bugs and regressions, fix them, and continue until nothing

goes wrong. Then the new version has to be certified by regulatory

authorities and Google. If Google, regulators, and operators all give the

go-ahead, the OTA (over the air) update is prepared. HTC handles this

for its unlocked devices; the operators for locked ones.

T H E M O B I L E W EB H A N D B O O K7 2

The consumer receives an update notification only when all these steps

have been completed. The process takes longer than the consumer

would like, but that’s unavoidable. The only thing the consumer can do

to speed up the process is buy an unlocked phone.

Google Services
Apple can change whatever it likes to

iOS, and push updates whenever it

likes. As we’ve just seen, Google can-

not do the same for Android. However,

Google’s purpose is not spreading new

versions of Android as such, but the

use of its services made possible by

these new versions. That’s why Google

opted to decouple its services from new

Android versions.

Google Services is a collection of important apps, such as Google Play,

Maps, YouTube, Google Chrome, and others. These apps are useful in

themselves, but the crucial change is that a large number of low-level

APIs, such as the Camera UI, the Account Syncing API that connects

you to your Google account, and the Maps API are now parts of the

Google Play app instead of parts of Android.

Since Play and all the others are apps, they can be updated inde-

pendently of Android. Even better: a Play update also delivers new ver-

sions of the low-level APIs. This change took place in Android 4.3, and

it made Google’s services effectively independent of the slow churn of

formal Android updates.

The article at

http://smashed.by/mwhb3

gives the best overview of

Google Services and the

reasons why it’s import-

ant to Google.

A N D R O I D 7 3

Device vendors can accept or reject Google Services. However, they

accept or reject the entire package — there is no picking and choos-

ing. If they reject Services, they’ll have to provide an alternative app

store, maps, video service, and also a browser. Google Chrome is part of

Services and is thus available on all Android 4.3+ devices that support

Google Services. However — and this is a crucial and often misun-

derstood point — Google Chrome is not necessarily the device’s
default browser. We’ll get back to this — oh boy, will we!

Most vendors have opted in to Google Services. The most important ex-

ception is Amazon. Amazon is a Google competitor on service level, so

it’s easy to see why it wants to use its own services instead of Google’s.

Among other things, that means it has to provide its own browser, Silk.

Android Browsers
With the background out of the way, let’s focus on browsers. The situ-

ation is complex, since device vendors still want differentiation, while

Google is trying to replace the old Android WebKit browser with Chrome.

Android WebKit
Let’s start at the beginning. A smartphone OS needs a browser, and

therefore the original Android supplied its own WebKit-based browser.

It was not given a name, but I call it “Android WebKit”. In some articles

and books it’s called the “stock” or “default Android browser”.

Android WebKit is not Chrome: it has a completely separate codebase

that contains completely separate bugs. It still uses WebKit, not Blink, as

its rendering engine. Always be careful to distinguish between Android

WebKit and Chrome. Fortunately that’s easy: any Chrome browser has

Chrome in its UA string, while any Android WebKit browser does not.

T H E M O B I L E W EB H A N D B O O K74

Initially, all Android devices had Android WebKit as their default

browser. It is tightly woven into Android, and can only be updated by

updating Android itself. Major changes took place between 2.3 and

3.0 and again between 4.0 and 4.1. Minor changes happen with every

update. The last Android WebKit version is 4.3. Google does not update

or support it any more because it wants to push Chrome instead.

Versions are only part of the story, though. Android WebKit contains a

lot of switches that turn certain functionality on or off, and device ven-

dors can set these switches to whatever they like. Since they wanted

to differentiate themselves, they did so enthusiastically. Earlier in this

chapter we encountered the zoom reflow example, where HTC en-

gaged one switch that the other vendors ignored. Similarly, you’ll find

the occasional difference between, say, a Samsung Android WebKit

4.1.1 and a Sony Android WebKit 4.1.1. That’s why it’s important to have

Android WebKits from different vendors to test in.

The differences between the Android WebKit flavors are usually rather

subtle. For example, the CSS min-width declaration is fully supported

only by the Samsung and Xiaomi versions of Android WebKit. All

the others may have slight bugs — that depends on how you use

min-width in your site. Another good example can be found at

http://smashed.by/aligntest. It turns out that some, but not all, Android

WebKit 4 browsers have a complicated bug when you use a text-align of

anything but left combined with a direction of anything but ltr. This

bug is not likely to ruin your day since the circumstances are so unusual. Still,

it proves that one Android WebKit 4 is not the same as another.

A N D R O I D 75

Unfortunately, Android WebKit was falling behind the competition,

and Google decided to replace it with Chrome. However, this replace-

ment process is anything but straightforward.

Chrome
Google Chrome was unveiled in 2008 as a desktop browser for Win-

dows, Mac, and Linux. Like Safari and a growing crop of mobile brows-

ers, it was based on WebKit. Nowadays it’s the most-used desktop

browser in the world. In 2012 Google created an Android version, too,

initially as a downloadable browser. In 2013, Google split off Chrome

from WebKit and created its own rendering engine, Blink. Initially, the

differences between the two were negligible, but as time progresses

WebKit and Blink will grow apart more and more.

Let’s take a brief look at the technical stack. Blink is the rendering

engine for HTML and CSS, and it’s usually coupled with the V8 Java-

Script engine. Blink is very tightly integrated with Chromium, Google’s

open-source browser that anyone can download and change. Chromi-

um exists for Windows, Mac, Linux, Chrome OS, and Android. Google

Chrome is Google’s own implementation of Chromium.

This is important because more companies than Google use Chromi-

um, and therefore Blink. Opera is the best-known example: in 2013 it

retired its own Presto rendering engine, took Chromium, created its

own interface, and released the resulting browser as Opera 14. Rus-

sian search giant Yandex also took Chromium and created the Yandex

browser. Although these browsers don’t have a large market share, they

illustrate the point that anyone can use Chromium to build their own

browser — and that very much includes mobile device vendors.

T H E M O B I L E W EB H A N D B O O K76

It’s this browser that Google wanted to push as a replacement for

Android WebKit. That’s great news for web developers: Chrome is a lot

more capable than Android WebKit. It’s also good for Google: Chrome

gathers user data that Google uses to power its ads. However, device

vendors were less enthusiastic. They prefer to capture user data them-

selves, and they also want to continue to differentiate themselves from

the other vendors.

Samsung Chrome… and Others
Now we get to the complicated part. Google made the installation of

Google Chrome mandatory for all devices that use Google Services.

However, nothing prevents the device vendors from using another

browser as their default. For instance, at the time of writing HTC still

uses Android WebKit as the default browser for its newest devices.

Samsung chose a different path. From the Galaxy S4 (released in 2013)

on, Samsung uses its own default browser, which is a Chromium-based

one. I call it Samsung Chrome to distinguish it from Google Chrome.

In the previous chapter we saw that Chrome has a browsing market

share of about 18%. It’s likely that most of this 18% is actually Samsung

Chrome, and not Google Chrome.

But that’s not all. Since Samsung is required to install Google Chrome

if it wants to use Google Services, the S4 and newer devices have two

Chromium-based browsers installed: Samsung Chrome and Google

Chrome. The same goes for all the other vendors. For example, the HTC

M8 (released in 2014) also comes with Google Chrome, even though

Android WebKit is the default browser. All non-Google Android 4.2+

devices I tested have Google Chrome installed as an app in addition to

their default browsers.

A N D R O I D 7 7

Is Samsung Chrome the same as Google Chrome? By now you won’t

be surprised to hear that the answer is no. First, Samsung Chrome

is frozen at version 28, and it is updated only together with a system

update — it’s a typical default browser in that respect. In contrast, at

the time of writing Google Chrome is at version 36 and can be updated

independently of the OS.

Second, I compared the previous Samsung Chrome, which was at

version 18, with Google Chrome 18, and found one difference: it did not

support border-radius, while Google Chrome 18 does. Samsung

does support border-radius-top and such, though. One wonders

what they were thinking. In any case, Samsung Chrome 18 is not the

same as Google Chrome 18. (I’d love to compare Samsung Chrome 28

with Google Chrome 28, but that’s not possible because Google doesn’t

have an archive of old Chrome versions.)

It’s possible that other device vendors will follow Samsung’s lead. Dif-

ferentiating your browser from the other guy’s remains popular among

device vendors. They will not stop doing it just because Google politely

asks them to. So be prepared for an HTC Chrome, a Sony Chrome, an

LG Chrome, and so on.

Also, as we saw, Amazon rejects Google Services and therefore has to

create its own browser. The newest version is a Chromium-based one,

marketed under the name Silk. (Older Silk versions used WebKit.)

At the time of writing Google Chrome is the default browser only on

Google Nexus devices and on Motorola devices from the time they

were owned by Google. You’ll often hear that it’s the default browser

from Android 4.2 or 4.3 onwards, but this is not true. I have never yet

T H E M O B I L E W EB H A N D B O O K78

encountered a non-Google device that has Google Chrome as its de-

fault browser. The other device vendors like differentiation too much.

In other words, Chrome is falling apart into several branches. At the

time of writing it seems that these branches, while not exactly the

same, will resemble one another more than Android WebKit branches,

but I’m not sure if that will continue to be the case. This is one more

thing to keep track of.

The upshot of this is that knowing a browser is Chrome is not enough.

You also have to find out which Chrome it is. Finally, using Google

Chrome for testing will not guarantee that your website works on Sam-

sung Chrome. It’s likely that it does, but not certain.

The Current Default Browsers
This is really complex. Let’s try to instill some sanity into the Android

browser world by making a list. Here is the situation at the time of

writing:

1. Android 2.x devices use Android WebKit as their default browser.

Updates occur only with Android updates. Chrome is not

available for Android 2.

2. Google’s own Nexus and Motorola devices use Google Chrome

as the default browser. This browser is an app that can be

updated independently of the OS.

3. From the Galaxy S4 on, Samsung uses its own Samsung Chrome

as the default browser. Updates occur only with Android updates.

A N D R O I D 79

4. Most other Android 4 devices still use Android WebKit as their

default browser. Updates occur only with Android updates.

5. Android WebKit is not available on Android 4.4 any more. Device

vendors wanting to update to 4.4 have to make a decision about

their default browser. Android WebKit? Google Chrome? Their

own Chromium-based browser? Something else entirely, such

as Firefox? Keep close watch on this: it’ll determine the future of

Android default browsers.

6. Amazon must use its own browser, since it opted out of Google

Services.

Downloadable browsers
The list above only includes the default browsers: the browsers in-

stalled at the moment the consumer buys the device. However, our

Android browser overview is not yet complete, since we’re still missing

the downloadable browsers.

We already talked about downloadable browsers in general in the pre-

vious chapter. Here the main point is that Google Chrome is effectively

a downloadable browser on most modern Android devices, and not the

default browser.

The question is whether the average Android user will download any

browsers — or even notice Google Chrome is installed. Web developers

sometimes think they do, because Google Chrome and Firefox are better

browsers than Android WebKit. I have found no evidence yet that the

average consumer is aware of that fact. I suspect that consumers will

just use whatever browser is visible on the home screen.

T H E M O B I L E W EB H A N D B O O K8 0

The danger is that after testing in a downloaded Google Chrome, web

developers may think they’ve covered all modern Android devices.

That’s not true. Your downloaded Google Chrome only tells you some-

thing about Google devices and other downloaded Google Chromes,

and not about Samsung Chrome or Amazon Silk or possible future

Chromium-based browsers.

Which Browsers Do I Test In?
Phew. That was complicated. Let’s wrap things up with a nice list of

browsers you need to test your websites in. There are three required

browsers, and a slew of optional ones. The three required browsers are:

1. Android WebKit 4, on a healthy mix of devices and Android

versions. A major device lab needs about six to eight of them —

one from each vendor. A smaller lab will restrict itself to two

or three: Samsung, HTC, and one other.

2. Google Chrome. Download it to one of your Androids if it’s

not already on it.

3. Samsung Chrome. You will have to buy a high-end Samsung

phone released in 2013 or later — most likely a Galaxy S4 or higher.

Identify the default browsers of all these devices carefully.

That’s pretty simple: look at the UA string (user-agent string;

navigator.userAgent) and see if it contains Chrome. If it

does, it’s Chrome (though not necessarily Google Chrome); if it

doesn’t, it’s Android WebKit.

Depending on your target audience and your client’s log files,

you may want to test on the following browsers:

A N D R O I D 81

1. Android WebKit 2, again on a healthy mix of devices.

2. Amazon Silk. You will have to buy an Amazon Kindle Fire or later.

3. Other browsers: notably Firefox, Opera Mobile, and UC.

Download them to one of your Androids.

Despite all the complexity we encountered, you will find that success-

ful web development on Android is mostly a matter of knowing that

these different browsers exist, testing carefully, and doing so on many

devices. There will be subtle differences, but most of these browsers

support most CSS and JavaScript fine.

If you are developing a very com-

plex or JavaScript-heavy application,

however, Android WebKit 2 will

become a challenge. It is sim-

ply not a very good browser by

modern standards — comparisons

to IE6 are apt. Cover part of your

wall with soft padding so you can

throw the device in despair with-

out actually damaging it.

Be sure to follow the Android device, version, and browser markets

carefully. New browsers may appear, while older ones may disappear.

In particular, test the default browser of any Android device you ac-

quire very carefully, and do not assume anything. In particular, remem-

ber that just because the browser sports Chrome in its UA string, this

does not mean it’s Google Chrome.

At http://smashed.by/mwhb4 you will

find recent figures for Android version

market share. These are based on visits

to Google Play, and not on browsing,

but it will tell you which Android ver-

sions are still being used actively.

T H E M O B I L E W EB H A N D B O O K8 2

Yes, it’s complicated. But it’s not overwhelming. Keep calm, carry on,

and identify each browser carefully.

Now that we’ve exhausted the mobile browser market it’s time to turn

to the nuts and bolts of mobile web development. The next chapter

will treat the viewports, what they are, and why mobile browsers need

three of them.

Chapter 4

Viewports

V I E W P O R TS 8 5

Chapter 4

Viewports
If there’s one thing everybody intuitively grasps about the mobile web

it’s that mobile screens are far smaller than desktop (or tablet or TV)

screens, and that an interface designed for desktop won’t necessarily

work well (or at all) on mobile. We found that responsive design helps

us a lot in solving that problem. Here’s a typical example:

<meta name="viewport" content="width=device-width,

 initial-scale=1">

@media screen and (max-width: 480px) {

 // styles for screen sizes up to 480px

 // or whichever breakpoint you prefer

}

I assume you’ve seen these two bits of code before, and have a rough

understanding of how responsive design works. You may not know all

the ins and outs, though, and that’s what this chapter is going to teach

you. It studies the two components of the code example: the meta view-

port tag, and width media queries — as well as some other meta view-

port declarations and all width-, height-, and resolution-related media

T H E M O B I L E W EB H A N D B O O K8 6

queries. By discussing pixels, viewports, resolutions, the meta viewport,

media queries, and related JavaScript events and properties, we hope to

gain some insight into how mobile browsers (and we web developers)

deal with the fundamental problem of the small screen.

Before we start, let’s appreciate the problem mobile browser vendors

are facing. Their users expect to be able to visit any site — even those

optimized for desktop only. However, such sites are frequently far too

wide to be shown comfortably on a mobile screen. Mobile browsers

have found a way to display these sites, even though the user experi-

ence remains suboptimal. Mobile browsers also offer a way for web

developers to adapt CSS layouts to their smaller screens. The ways in

which they do so form the topic of this chapter.

Pixels
Before we can investigate the viewports we must say some words about

pixels. The humble pixel is the foundation of website layouts, and web

developers use it instinctively. Still, there’s a lot to know about this fun-

damental building block. For instance, what exactly is a pixel?

Media queries are specified by the W3C at http://smashed.by/mwhb5.

Apple invented the meta viewport, and all other mobile browsers copied

it. Unfortunately there is no real specification yet — well, there is the CSS

Device Adaptation spec at http://smashed.by/mwhb6, but this docu-

ment is written in such arcane, rarified language that even I, who know

quite a bit about the viewports, can’t make heads or tails of it. I hope it

specifies what follows in this chapter. It might not, but then that’s the

W3C’s problem, not ours.

V I E W P O R TS 87

That seems a pretty easy question: a

pixel is the smallest area of a com-

puter screen that’s able to take on

a certain color. The more pixels on

a screen, the more you can see at

the same time; or, when the device

stays the same size but the pixels

become more dense, the better the

screen shows subtle gradients, and

the crisper your website looks.

Although all this is true as far as it goes, it’s not the whole story.

For instance, what exactly happens when you give an element

width: 200px?

Duh. The element is 200 pixels wide. Silly question.

Sure. But these pixels are not the

device pixels on the screen we just

described, and an element with

width: 200px may or may not

span 200 of those device pixels. In

fact, there are two kinds of pixel:

1. Device pixels: physical pixels on the device screen, of

which there are a fixed amount on any device.

2. CSS pixels: an abstraction layer created specifically for us

web developers to be used in our CSS (and JavaScript).

C S S P I X E L S

D E V I C E P I X E L S

On older screens, and with zoom

100%, one CSS pixel equals exactly

one device pixel.

C S S P I X E L S

D E V I C E P I X E L S

On high-density screens such as

Apple’s Retina, CSS pixels could span

many more device pixels.

T H E M O B I L E W EB H A N D B O O K8 8

The element with width: 200px spans 200 CSS pixels. How many de-

vice pixels that equals depends on the nature of the screen (high-den-

sity or not) and the zoom factor the

user has applied. The more the user

zooms in, the more device pixels

are covered by one CSS pixel.

Therefore the element does not

necessarily span 200 device pix-

els. On Apple’s Retina screens, for

instance, which use twice the pixel

density of traditional screens, the element spans 400 device pixels. If

the user zooms in it may span even more device pixels.

Still, every CSS or JavaScript test will return an element width of 200px.

That’s deliberate. While you’re working with CSS and JavaScript you

don’t really care how many device pixels one CSS pixel covers. You

gladly leave this complicated computation, which depends on the

nature of the screen and the current zoom factor, to the browser. That’s

how CSS pixels are an abstraction layer created specifically for us web

developers. We can just say width: 200px without worrying (too

much) about what happens on the screen.

Every CSS declaration and nearly every JavaScript property works

with CSS pixels, so in practice you’ll never use device pixels. The only

exception is screen.width/height, which is a problem all by itself

that we’ll return to later.

C S S P I X E L S

D E V I C E P I X E L S

If the user zooms out enough, one

CSS pixel may become distinctly

smaller than one device pixel.

V I E W P O R TS 8 9

The Three Viewports
Now we’re going to change our CSS to width: 35%. Before revealing

what happens now, let’s add a teaching moment. As soon as any CSS

property uses percentages, always ask yourself: “Percentages of what?”

You will often find that the answer offers insight to how CSS truly works.

OK, so let’s do it. 35% of what? Every web developer knows that, on

desktop, the answer is 35% of the browser window’s width, but not ev-

eryone will be completely clear on why this is the case. So it’s time for a

quick refresher course in basic CSS.

Absent any width declaration in the CSS, each block-level element has

a default width of 100%. 100% of what? Every CSS percentage width is

calculated relative to the width of the parent element, so the element

now takes 100% of the width of that parent element. So what we have

here is essentially this:

html,body {

	 //	no	width	defined;	so	an	implied	100%

}

div.sidebar {

	 width:	35%;

}

Our div.sidebar takes up 35% of the width of its containing block,

the body. The body, having no given width, takes 100% of the width of

its own containing block, the html element. This element has no given

width, either, so it also takes 100% of its containing block.

T H E M O B I L E W EB H A N D B O O K9 0

And what is the html element’s containing block? Now we have arrived

at the viewport, which the CSS specification calls the initial contain-
ing block. This initial containing block is

the element that all CSS percentage widths

are ultimately derived from and that serves

to constrain your CSS layout to a certain

maximum width. (You can break out of

these constraints by assigning very large

widths to elements, but let’s simply ignore

that for now.)

On the desktop, the viewport is exactly as

wide as the browser window. Therefore,

leaving aside margins and padding, the

html and body elements are also as wide as the browser window.

That’s why the sidebar takes up 35% of the width of your browser win-

dow. This is not particularly groundbreaking news, but you need a clear

picture of the mechanism in order to understand what follows.

The Layout Viewport
The problem on small-screen mobile devices (and even on most tablets)

is that making the viewport equal to the browser window width would

have some very ugly consequences. Mobile or tablet browsers gener-

ally have about 240–640 pixels of screen width at their disposal, and

an average desktop-only site assumes at least 800px, and preferably

1,024px. As a result, our desktop-designed sidebar with a width of 35%

will look horribly squished on mobile.

3 5 %

On desktop, the sidebar with width: 35%

takes up 35% of the viewport width,

which is equal to the browser window.

V I E W P O R TS 91

Some sleight of hand is clearly necessary here. Mobile browser ven-

dors had to make sure that our sidebar displayed relatively well despite

the narrow screen. That’s why they

made the viewport significantly

wider than the device screen, so

that sites would look roughly as

intended. The most common view-

port width is 980px, although you

can find anything between 768 and

1,024.

It’s likely that a desktop-based site

will display well in an 768–1,024px

viewport. The element with width:

35%, and in fact all elements in the

site, will display roughly as a desktop designer intended. Thus the mo-

bile browser can also handle desktop websites, and users will be happy.

There’s a trade-off, though. If a mobile browser encounters a non-mo-

bile-optimized site, it zooms out as much as possible in order to give

the user an overview. This is not good for legibility, but if you want to

display desktop-optimized sites on a small mobile screen something

has to give way.

3 5 %

If the narrow mobile screen were also

the viewport, sites would get squished

horizontally, which is usually quite ugly.

T H E M O B I L E W EB H A N D B O O K9 2

On mobile, then, the viewport is not tied to the width of the actual

mobile browser screen any more, but is fully independent. We call it

the layout viewport — the viewport relative to which the CSS layout is

calculated, and which constrains that layout.

The Visual Viewport
Although the creation of the independent

layout viewport helped a lot with porting

desktop sites to mobile, we cannot entirely

ignore the screen size of the mobile device.

Some CSS declarations have a relation

with what the user sees, and not with CSS’s

fairly abstract initial containing block. Also,

occasionally it’s useful for web developers

to find out how much of the site the user is

currently seeing.

So it’s time to introduce the visual view-
port: the area of the site the user is current-

ly seeing. The user can manipulate the visual

viewport by zooming out or in, without

affecting the layout viewport, which retains

its given width.

In general, the visual viewport is not all

that important to web developers, but if you

desperately need to know which part of the

site the user is currently viewing, it’s there,

and you can access the data with JavaScript.

as we’ll see later.

V I S U A L V I E W P O R T

The visual viewport is as wide as

the device screen, and changes

in size when the user zooms.

L A Y O U T V I E W P O R T

On mobile, the default layout viewport

is significantly wider than the screen in

order to accommodate desktop-

optimized sites.

V I E W P O R TS 93

The Ideal Viewport
By default, a mobile or tablet browser’s layout viewport is 768–1,024

pixels wide. Although that saves desktop websites from being squished,

it’s not ideal, especially for mobile users, since a narrow device screen

would be better served with a narrow site.

In other words, the default size of the layout viewport is not the ideal size.

That’s why Apple, followed by all other browser vendors, introduced the
ideal viewport, which is the size of the layout viewport that is ideal for

the device. Websites shown in this ideal viewport have the optimal width

for browsing and reading, and initially the user does not need to zoom.

Still, this ideal viewport should only be used if the site is ready for mo-

bile. That’s why it is only implemented if you actively order the browser

to do so by including the meta viewport tag. If there is no meta view-

port, the layout viewport remains at its default width. The ideal view-

port only comes into play when you explicitly call on it:

<meta name="viewport" content="width=device-width">

This line of code tells the browser to make the layout viewport match

the ideal viewport. We’ll discuss the details of the meta viewport later

in this chapter.

The best-known ideal viewport is the early iPhone’s 320×480px, which

was upgraded to 320×568px in the iPhone 5. Of course, not many other

devices use the same ideal viewport, and that’s logical given that most

devices have a slightly different physical width or device pixel count.

Android phones, in particular, have widely ranging ideal viewports,

varying (in my collection) from 320×427px for the Samsung Galaxy

T H E M O B I L E W EB H A N D B O O K9 4

Pocket to 400×600px for the Samsung Galaxy Note I, while most other

Android devices use 360×640px.

Defining the ideal viewport is a job for the browser, and not for the device

or operating system. Thus, different browsers on the same device may

have different ideal viewports. For instance, where the default Android

WebKit on the Samsung Galaxy Pocket has a 320×427px ideal viewport,

Opera Mobile 12 on the same device uses 240×320. However, the browser’s

values also depend on the device it runs on. Chrome 34 on the Samsung

Galaxy S4 has an ideal viewport of 360×640, but on the Nexus 7 it’s

601×962. The reason is obvious: the Nexus 7 is a tablet that has a physi-

cally wider screen, and thus the ideal viewport should also be wider.

320×427 and 601×962 may seem to be weird values, and so is the

BlackBerry Z10’s 342×570, but there are no wrong values for the ideal

viewport. It can be anything the browser vendor feels is appropriate to

the device. I studied about 50 browsers, and all of them had reasonable

ideal viewport dimensions for the device they run on.

The ideal viewport width changes with the device orientation: Chrome/

Nexus 7 has an ideal viewport width of 601px in portrait mode and

962px in landscape mode. Later we’ll encounter some Safari problems

in this area, as well as the way to solve them.

Although it may seem that this huge amount of ideal viewport dimen-

sions makes your job more difficult, this is not the case. You should

just tell the browser to use its ideal viewport, which will always give a

good result. Then you should use media queries to make your site lay-

out respond to whatever value the browser deems correct. We’ll come

back to media queries later.

V I E W P O R TS 9 5

Which Viewport?
Let’s quickly repeat our findings:

1. On desktop browsers, the browser window is the viewport (also

called the initial containing block), which constrains the width

of your CSS layout. It also defines what the user can see.

2. On mobile, the desktop viewport has been split into two:

the layout viewport to constrain your CSS layouts; and

the visual viewport to define what the user can see.

3. Mobile browsers also have an ideal viewport, which

gives the ideal dimensions of the layout viewport

for this specific browser on this specific device.

4. It is possible to set the dimensions of the layout viewport to those

of the ideal viewport. In fact, this is the basis of responsive design.

Although the concept of a viewport is nothing new, splitting it into

three is a recent innovation. That’s why you’ll often find “viewport” in

articles or even W3C recommendations without the author specifying

which one. Usually it’s pretty clear from the context which viewport is

meant, but from time to time you encounter edge cases, or instances

where the writer is unaware of the existence of more than one viewport.

Therefore, if you encounter “viewport” anywhere, get into the habit

of asking yourself which viewport. Sometimes the answer may be

surprising, or completely unclear. In the latter case, don’t hesitate to

ask the writer for clarification. To get you in the mood, here are two

examples from CSS. Both depend on the viewport — but which one?

T H E M O B I L E W EB H A N D B O O K9 6

1. 	position:	fixed. The specification says: “The

box [with fixed position] is fixed with respect to the

viewport and does not move when scrolled.”

2. The vw and vh units are percentages of the viewport;

width: 25vw means the width of the

element is 25% of the viewport width.

We’ll get back to these two examples in the CSS chapter. For now, try to

figure out which viewport they depend on.

Zooming
A few words on zooming are necessary, since it works quite differently

on desktop and on mobile. Not only are there technical differences, but

also differences in why and how often people use zoom.

On the desktop, zooming typically occurs because of a combination of

poor eyesight and tiny fonts. A user struggles to read the text, and in-

creases the zoom level a bit. This will likely happen once, when the user

first sees the page. After that there is no more need for zooming, and

some modern desktop browsers even remember the preferred zoom

level and apply it automatically when the user visits the site again. So

on desktop, zooming is typically a one-off occurrence.

On mobile, zooming is very different. First of all it might not be neces-

sary, if the web developer has taken care to create a responsive site or a

separate mobile site. (Even if you have, it’s useful to still allow zooming,

since some users will not be able to read your fonts even in the mo-

bile-optimized site.)

V I E W P O R TS 97

If a mobile browser encounters a non-mobile-optimized site, it zooms

out as much as possible in order to give the user a good overview.

That’s useful, since the user can now choose which parts of the site

to interact with. Such interaction involves zooming in on part of the

site, and when users want to go elsewhere they could zoom out and

then zoom in on the next part. Thus, on mobile, zooming is an iterative

process, and it is much more important to the flow of user interaction

than on desktop.

What is Zooming?
Technically, zooming in is the process of enlarging CSS pixels, typically

to arrive at a readable font size. Yet zooming influences all elements on

a page. Our element with width: 200px still spans exactly 200 CSS

pixels, but since the size of those pixels has increased, it now spans

more device pixels. Zooming out does the exact reverse: the size of the

CSS pixel is decreased and the element spans fewer device pixels.

Thus zooming influences the size of the (visual) viewport on both desk-

top and mobile. Zooming in makes it smaller, since fewer CSS pixels fit

on the screen, and zooming out makes it larger, as more CSS pixels fit

on the screen. The zoom factor and the visual viewport therefore have

an inverse relationship: the larger the zoom factor, the smaller the visual

viewport.

The big difference between desktop and mobile is that on mobile the

layout viewport is not affected by zooming, but on desktop it is, since

it is equal to the visual viewport and it’s impossible to change the one

without changing the other.

T H E M O B I L E W EB H A N D B O O K9 8

Page Zoom
This may be difficult to picture, so let’s use a practical example. We

start with page zoom, which is the way desktop browsers zoom. We

will concentrate on our old friend, the sidebar with width: 35%.

Let’s say a desktop browser window is

1,024px wide, which means 1,024 CSS

pixels fit on the screen. Furthermore,

the zoom level is 100% and the screen

has a device pixel ratio of 1 (just nod

wisely; we’ll cover DPR later), so that

one CSS pixel now exactly covers one

device pixel.

How wide is the sidebar? 35% of 1,024

equals 358.4, rounded to 358. The

element is 358 CSS pixels wide, and be-

cause of the specifics of this screen and

zoom, also 358 device pixels wide.

Now the user zooms in to 200%. The CSS pixels double their width,

which makes the viewport shrink to a width of 512 CSS pixels; at this

point, one CSS pixel is as wide as two device pixels. Since the viewport

width changed, our element’s width is recalculated. It is now 35% of 512,

which equals 179.2 CSS pixels wide, rounded to 179.

However, since one CSS pixel spans two device pixels in each dimen-

sion, it’s actually still 358 device pixels wide. That’s as large as it was

before the zoom — in device pixels.

Lorem ipsum dolor sit amet,
consetetur sadipscing elitr,
sed diam nonumy eirmod
tempor invidunt ut labore
et dolore magna aliquyam
erat, sed diam voluptua.

Lorem ipsum
dolor sit amet,
consetetur
sadipscing

The viewport becomes smaller when

the user zooms. This causes the CSS

layout to be recalculated.

V I E W P O R TS 9 9

The font size is the major difference now: a 16px-wide character will now

span roughly 32 device pixels, so fewer characters now fit on one line.

Pinch Zoom
Let’s do the same on a mobile device. Here it’s called pinch zoom, and it’s

fundamentally different from page zoom.

Let’s say the mobile browser’s layout viewport width is again 1,024px,

but the screen is only 320 device pixels wide. The element with

width: 35% is still 358 CSS pixels wide:

the calculation is exactly the same as on

desktop. It’s now wider than the visual

viewport and sticks out of the screen.

No matter, the user can always zoom

— in fact, this is the exact use case that

mobile zooming is trying to solve.

Now let’s again say the user zooms in

from 100% to 200%. Again the CSS pixels

increase in size, until only 160 of them fit

on the screen. However, here the layout

viewport stays at 1,024px, so our element

doesn’t change size: it’s still 358px wide and is now definitely much

wider than the 160px visual viewport. But the user can always zoom.

Mobile zooming does not cause the CSS layout to be recalculated. Since

zooming happens a lot on mobile, and mobile processors are slow and

their batteries can drain quickly, not recalculating the layout has defi-

nite performance advantages.

Lorem ipsum dolor sit amet,
consetetur sadipscing elitr,
sed diam nonumy eirmod
tempor invidunt ut labore

Lorem ipsum dolor sit
amet, consetetur
sadipscing elitr, sed
diam nonumy eirmod
tempor invidunt ut
labore et dolore magna

Only the visual viewport changes size when

the user zooms; the layout viewport remains

the same. The CSS layout is not recalculated.

T H E M O B I L E W EB H A N D B O O K10 0

Minimum and Maximum Zoom
How much can the user zoom? On mobile, it turns out that it’s from

about 20% to about 500% — a factor of five, in other words. By using the

proper meta directives, which we’ll explore later in this chapter, you

can widen this range to a factor of ten: 10% to 1,000%. Android WebKit

is different, though: it can zoom by a factor of four: 25% to 400%, meta

directive or no meta directive.

Wait a minute! What are all these percentages? 10% and 20% and 500%

and 1,000% of what? Oh good, you remembered the right question. Now

answer it — guess, if you must. And don’t look at the next paragraph

just yet.

If you think these zoom factors are relative to the visual viewport

size, you’re wrong. If you think they’re relative to the layout viewport

size, you’re also wrong. Browsers calculate their zoom level relative to

the size of the ideal viewport. And in case you’re wondering, no, this

doesn’t make the slightest bit of sense.

Suppressing Zoom
It is possible to suppress the user’s zooming ability using this meta tag:

<meta name="viewport" content="user-scalable=no">

However, suppressing zoom is evil. Not flawed, not stupid (well, that

too), but unmitigated, inexcusable evil; Sauron-like depths of evil.

V I E W P O R TS 101

A friend of mine is a doctor. One day she was at the top floor of the hos-

pital when her pager bleeped and she was urgently called downstairs

for a resuscitation. (Her pager? Yes. The hospital hasn’t yet figured out

that they could also use mobile phones for such things. But that’s an-

other story.) While waiting for the lift to take her ten stories down she

decided to briefly go through the resuscitation protocol on an app she’d

recently purchased. The crucial scheme that showed all the steps was a

bit too small, however, and she tried to zoom in.

She couldn’t. It turned out some idiot app designer had turned off

zooming; apparently, it was “not necessary.” Thus a doctor was unable

to view the steps that could save her patient’s life because some silly

designer’s so-called creativity couldn’t handle the threat of zooming.

That’s what I mean by evil. If people zoom in on your carefully crafted

page, it means they can’t make out a few details. That’s your fault, and

not the users’. So don’t punish them for it.

Chrome for Android allows you to turn off zoom suppression, and

that’s a setting I check immediately. Other browsers may do the same

— I admit I didn’t test them all. The takeaway here is that, apart from be-

ing evil, suppressing zoom is pointless because users can (and, I expect,

will) override it. So don’t bother.

Other Forms of Zooming
There’s a third form of zooming, and it exists only on Firefox and Safari

for the desktop, and on no mobile browser. It’s text zooming, which

means that when the user zooms the font size is upped, but the rest of

the page stays as it is. Although this is not a mobile function and falls

outside the scope of this book, it’s still important for when we discuss

em-based media queries below.

T H E M O B I L E W EB H A N D B O O K10 2

Finally, there is the possibility that the user explicitly sets the default or

the minimum font size. Usually the default is 16px, but many brows-

ers allow the user to set it to another value. This is not zooming in

the strict sense because the user does not use the zoom interface but

instead goes to the settings and likely changes the font size once and

forever.

Resolution
Resolution is a complicated topic because it has two meanings. On the

one hand there is the physical dots-per-inch count of specific devices,

and on the other hand there is something called resolution in CSS and

JavaScript that seems to be the same but is in fact something quite

different.

Physical Resolution
All screens have a physical resolution. Dividing the number of pixels

by the width of the screen in inches gives you the device’s dots per inch

(DPI for short). More pixels per inch is good, since it means a crisper

display. That’s why a device’s DPI has become an important unique

selling point that’s touted in every device description.

It is impossible for web developers to know this physical resolution

because browsers simply do not have the information available. A few

expose the number of device pixels in screen.width, but this is not

reliable across browsers, and in any case the physical size of the device

is not available to JavaScript. Using a device database like WURFL or

DeviceAtlas is the only option for web developers who need the physi-

cal device resolution. We’ll get back to device databases in the Becom-

ing A Mobile Web Developer chapter.

V I E W P O R TS 10 3

Device Pixel Ratio (DPR)
JavaScript has a window.devicePixelRatio property, and CSS has

device-pixel-ratio (WebKit-based browsers) and resolution

(all other browsers) media queries, but they have nothing to do with

physical resolution. Instead, they give you the ratio of the number of

device pixels to the ideal viewport size.

Early iPhones are 320 device pixels wide, and their ideal viewport is

also 320 pixels wide. Therefore their device pixel ratio (DPR) is 1. Later

iPhones have 640 device pixels, but their ideal viewport is still 320 pix-

els, and their DPR is thus 2.

DPR does not need to be an integer. We saw that Android WebKit on

the Samsung Galaxy Pocket has an ideal viewport width of 320, just

like the iPhone. However, the device has only 240 device pixels, and

therefore its DPR is 0.75. The BlackBerry Z10 has 768 device pixels, and

its ideal viewport width is 342, which gives it a DPR of roughly 2.25.

Web developers use DPR to decide whether or not to send high-reso-

lution images or not. If the device has more device pixels available for

each CSS pixel, a high-res image makes sense because it makes better

use of the device’s capabilities and will please the users.

However, implementing this correctly is technically tricky for reasons

that fall outside the scope of this book. Some of the best minds in mod-

ern web development have united in the Responsive Images Community

Group (http://responsiveimages.org/) to work on a solution, and if this

problem interests you, you should follow them.

T H E M O B I L E W EB H A N D B O O K10 4

Like with the ideal viewport, none of these values are wrong, though

some appear weird when you see them for the first time. Browser ven-

dors decided on an ideal viewport width that works on the device, and

the DPR logically follows from that.

dppx and dpi
The implied unit for JavaScript window.devicePixelRatio and the

device-pixel-ratio media query is dppx: dots per pixel. Actually

appending the unit is not allowed, so this is the proper syntax:

if (window.devicePixelRatio >= 2) {

 // DPR at least 2. Do something.

}

@media all and (-webkit-min-device-pixel-ratio: 2) {

 // DPR at least 2. Do something.

}

The resolution media query, though, does require a unit, and the prob-

lem is that while dppx is available in most browsers, it is not supported

by IE11 and below. Therefore we have to use the dpi unit instead. Since

one inch is defined as 96 pixels in CSS, 1dppx is equal to 96dpi. To make

the media query above fully cross-browser we have to do the following:

@media all and ((-webkit-min-device-pixel-ratio: 2),

 (min-resolution: 192dpi)) {

 // DPR at least 2. Do something.

}

V I E W P O R TS 10 5

Don’t make the mistake of thinking physical inches are involved in the

dpi unit. Otherwise, it’s ready for use.

The Meta Viewport
The main purpose of the meta viewport tag is to match the layout

viewport size to the ideal viewport size. It was invented by Apple, and

the other mobile and tablet browsers copied most of it. Desktop brows-

ers do not support it, nor should they, since they lack the concept of

an ideal viewport. IE is a special case: on phones it supports the meta

viewport tag, but it’s better to use @-ms-viewport. We’ll get back to

that after the description of the tag.

The meta viewport tag should be placed in the <head> of the HTML

document and has this format:

<meta name="viewport" content="name=value,name=value">

Each name/value pair is a directive that gives an instruction to the

browser. They are separated by commas. There are five of them:

1. width: sets the width of the layout viewport to the indicated value.

2. initial-scale: sets the initial zoom factor of the

page and the width of the layout viewport.

3. minimum-scale: sets the minimum zoom

level (how much the user can zoom out).

4. maximum-scale: sets the maximum zoom

level (how much the user can zoom in).

5. user-scalable: prevents user zooming when set to

no. This is evil and we will demonstratively ignore it.

T H E M O B I L E W EB H A N D B O O K10 6

Most resources mention a sixth directive, height, which sets the

height of the layout viewport. Unfortunately the height directive isn’t

supported anywhere at the time of writing, not even in Safari on iOS.

(Then why did Apple add it to its documentation? I don’t know.)

width
The main purpose of the meta viewport tag is to set the layout viewport

to the ideal one. We already saw how this is done:

<meta name="viewport" content="width=device-width">

Now your webpage has the ideal size for the device it’s being displayed

on, and the only thing you have to do is find that size via a media query.

We’ll consider all that later.

The layout viewport width changes when the user switches the device’s

orientation. For example, Chrome on the HTC One X has an ideal viewport

width of 360px in portrait mode, but that becomes 640px in landscape. In

general this is what you want: the ideal viewport should respond to the

device orientation because landscape offers more width than portrait.

There’s one important exception: Safari on iOS. This browser does not

adjust the ideal viewport to the device orientation: it stubbornly stays

at the portrait values of 320px (iPhone) or 768px (iPad). This is not a

bug in the sense that it’s an unintended consequence of bad code, but

it’s still annoying and irregular. My guess is that Apple does this in

order to avoid the recalculation of the page layout caused by changing

the layout viewport width. That recalculation might cost too much pro-

cessor time and battery life. (Then again, all other browsers can handle

it.) There is a solution to this problem that we’ll look at in a moment.

V I E W P O R TS 107

Though the device-width value is the correct one for more than 95%

of the sites, it is possible to assign another width to the layout view-

port. For instance, this gives you a layout viewport of 400px wide in all

circumstances:

<meta name="viewport" content="width=400">

The maximum value browsers support is 10,000 pixels (but why would

you want to do that?), and the minimum about 20% of the ideal view-

port width. Android WebKit doesn’t allow any width value below the

layout viewport width. If you specify one, it reverts to the default lay-

out viewport width; usually 980px. IE10 doesn’t allow any width above

480px, reverting to the default layout viewport width of 1,024px.

initial-scale
The initial-scale directive sets the initial zoom factor of the page.

The value 1 means 100%, 2 means 200%, and so on. We’ve already seen

that this zoom factor is calculated relative to the ideal viewport.

Remember: the zoom level is inversely proportional to the visual view-

port width. A higher zoom level means a smaller visual viewport. So

initial-scale=1 zooms in until the visual viewport is as wide and

high as the ideal viewport. initial-scale=2 zooms to 200%, so the

visual viewport is half as wide and high as the ideal viewport. On the

BlackBerry Z10 with an ideal viewport width of 342px, that would be

342px and 171px wide, respectively.

This works fine in most browsers, and it’s what one would expect to

happen. However, using initial-scale has a second effect: it sets

the dimensions of the layout viewport to the zoom dimensions as well.

T H E M O B I L E W EB H A N D B O O K10 8

That is, on the BlackBerry Z10 initial-scale=1 would give a layout

viewport of 342×570, just as with width=device-width, while ini-

tial-scale=2 would halve that to 171×285.

So it turns out that initial-scale=1 has exactly the same effect

as width=device-width. And yes, this is weird. It doesn’t make the

slightest bit of sense to me.

The Perfect Meta Viewport
An unexpected bonus is that Safari’s refusal to switch to landscape

width doesn’t occur when you use initial-scale=1. In portrait

mode the layout viewport is now 320px wide, and in landscape mode

either 480px or 568px, depending on the iPhone model.

Just to keep you on your toes, IE10 turns out to have exactly the oppo-

site problem: with initial-scale it stays at 320px even in landscape

mode, but with width=device-width it switches from 320 to 480.

In order to solve the bug in all browsers it’s thus necessary to use the

following:

<meta name="viewport" content="width=device-width,

 initial-scale=1">

Now both the Safari and the IE problems are covered, and your layout

viewport responds to the orientation changes of the device. This is the

perfect meta viewport, and you should use it in all your projects.

V I E W P O R TS 10 9

Elements Too Large
Next problem. Suppose you set the layout viewport to the ideal view-

port and then add an element that’s clearly too wide. What happens

when the layout viewport is constrained to 320 (or 360 or 400) pixels,

but contains an element that’s 800 or 1,000 pixels wide?

Obviously, the element sticks out of the layout viewport. This is com-

mon behavior in CSS. Technically, the overflow declaration tells the

browser what to do now, and its default value of visible makes sure

the element that’s too wide is shown in its entirety and sticks out of its

container. So this is no surprise.

But what about the layout viewport? You’d expect it not to react

at all to this element, but it turns out that if you use either

width=device-width or initial-scale=1 — but not both — some

browsers stretch the layout viewport to accommodate the element. The

compatibility patterns are tricky here, but fortunately the solution is

simple: if you use both, most browsers keep the layout viewport intact.

This is one more reason to use the perfect meta viewport.

Minimum Layout Viewport Width
The fun part of doing this kind of browser compatibility research is

messing things up to see how browsers react. So I decided to give some

conflicting orders and see what happened. The results were surprising.

T H E M O B I L E W EB H A N D B O O K110

<meta name="viewport" content="width=400,initial-scale=1">

Now we’re telling the browser to set the layout viewport width to

400, and then to set it to the ideal viewport width. It turns out that all

browsers react in the same way: they pick the largest available width

per orientation. So an early iPhone in portrait orientation would get

a 400px-wide layout viewport (the larger of 320px and 400px), and in

landscape 480px wide (the larger of 480px and 400px).

Thus you can apply a minimum width to your layout viewport. The

example above sets it at 400px, allowing the browser to make the lay-

out viewport larger if device and orientation require it, but not smaller.

I’m not sure if there’s a practical use case for such a minimum width,

but technically it’s possible and I encourage you to experiment.

minimum- and maximum-scale
We’ve examined various aspects of zooming already, but let’s repeat it

all in the context of minimum-scale and maximum-scale. These di-

rectives allow you to set a minimum and maximum zoom factor. Like

initial-scale, all zoom factors are calculated relative to the ideal

viewport.

Without these directives the browser allows zooming in and out to a fac-

tor of five (20% to 500%); with these directives that factor rises to ten (10%

to 1,000%). Higher factors are not supported, so maximum-scale=20

will effectively be maximum-scale=10. Android WebKit does not

support minimum-scale. Also, it zooms to a factor of four (25% to

400%), and it’s not possible to change that. IE has some issues with these

directives; don’t be surprised if they don’t work quite like you expect.

V I E W P O R TS 111

@viewport and IE
The meta viewport tag is an odd construct in the sense that it gives

orders to the CSS presentation layer but is itself part of the HTML

structural layer. Opera proposed a pure CSS syntax:

@viewport {

			width:	device-width;

			zoom:	1;

}

Unfortunately this syntax has not yet been widely picked up. Op-

era supported it in the Presto rendering engine, but now that it has

switched to Blink, Opera has lost it again. The only browser to support

it at the time of writing is IE, as @-ms-viewport, and it’s not exactly

the same as the meta viewport tag.

IE supports the meta viewport tag only on phones, and not on tablets.

In addition, the tag always uses an ideal viewport width of 320px, be-

cause Microsoft wants to stay as close to the iPhone as it can. However,

when you use @-ms-viewport, IE switches to its true ideal viewport

— the one that best matches the device. So the following code gives you

a layout viewport equal to the true ideal viewport (for instance, 364

pixels on the Lumia 820), even though the meta viewport tag gives you

320px:

@-ms-viewport {

	 width:	device-width;

}

T H E M O B I L E W EB H A N D B O O K11 2

@-ms-viewport overrides the tag, so by using both you can make sure

that IE takes on its true ideal viewport. In general, this is the best thing

you can do since 320px is not always ideal for every Windows Phone

device.

Media Queries
We’ve referred to media queries a lot on this chapter. The time has

come to review them systematically. Media queries are nothing but

if-statements in CSS. If the width is 800px or larger; if the orientation

is landscape; if the resolution is 1.5dppx or smaller: apply these CSS

declarations.

There are three categories of media queries:

1. media type queries: what kind of device is this?

2. viewport-related media queries — the meat of this section.

3. feature-related media queries: does the browser support feature X?

The media queries discussed in this section only work at page level.

However, the idea of element media queries is being floated. They

would react to the width or height of not the page as a whole, but of a

specific element, and would be useful for Twitter or Facebook widgets

and such. Although at the time of writing, element media queries are not

supported, and there isn’t even an agreement on syntax and scope yet,

they are a good idea and I hope they’ll be implemented eventually.

V I E W P O R TS 11 3

We’re not going to talk about the last category. Although some may be

useful for mobile web development, only the useless ones are widely

supported, and none of them has anything to do with the viewport.

Media Types
Originally, the idea was that media types would allow you to distin-

guish between different types of devices. Unfortunately, that idea has

failed; the only truly useful media type is print. The others have never

been implemented properly. For instance, TV browsers should support

the tv type but don’t. Similarly, mobile devices are supposed to react

to the handheld media type but don’t. The reason why they don’t is

instructive.

Back in the bad old days, when mobile browsers could at most han-

dle WAP and the XHTML-MP subset of HTML, a good many of them

followed the spec and supported handheld. Web developers eagerly

pounced on that to send these browsers much simpler versions of their

styles and scripts, since they didn’t support the full versions anyway.

On came modern mobile browsers such as Opera, Safari, and BlackBer-

ry, and they saw how web developers were using the handheld type.

Since they supported HTML, CSS, and JavaScript properly they wanted

to get the full styles and scripts. The obvious way of doing that was

not supporting the media type, so that’s what they did. Thus, the mark

of a modern mobile browser is not supporting handheld. TV browser

vendors made a similar decision.

T H E M O B I L E W EB H A N D B O O K114

It’s the same arms race all over again: web developers want to dis-

tinguish between less capable and more capable browsers; then new

browsers are released in what was the less capable category, and to end

up on the right side of developers’ detection efforts they start fudging

their identities. Minor browsers did this back when we thought only

Netscape and IE were capable; mobile browsers do it now, and no doubt

many more browsers will follow the same path.

So don’t bother with types, except for print. Print style sheets are very

useful and underused. Although they fall outside the scope of this book,

I urge you to use them in your projects.

Syntactic Notes
This is a media query. The styles are used when the layout viewport is

400px wide or less:

@media all and (max-width: 400) {

 div.sidebar {

 // these div.sidebar styles

 // are used when the layout viewport

 // is 400px wide or narrower

 }

}

There are several important points here. First of all, all media queries

require a media type, and usually all is the best one to use.

V I E W P O R TS 11 5

Second, you should always use a min- or max- prefix to your media

queries. Usually you’re not interested in an exact value, but in a range

of values. The example above works whenever the layout viewport is

400px wide or less, and below we’ll see an example that should work

when the resolution is 1.5 or less.

Finally, the unit of this media query is the pixel, even though no formal

unit is defined. You can also use any unit that’s valid for a CSS length,

such as em or cm, though you have to explicitly define them. Only per-

centages are not very useful, and to be honest I’m not even sure they’re

supported. (Besides, percentages of what?)

You can use as many queries as you like. The and is a logical and, and

the comma is a logical or. So let’s take a more complicated example.

The next media query will apply if the layout viewport width is 400px

at most and the orientation is portrait and the resolution is 1.5 at

most. That last condition needs two media queries because of browser

incompatibilities, and they’re separated by a comma (device pixel ratio

1.5 or less or resolution 144dpi or less).

@media all and (max-width: 400) and (orientation: portrait)

 and ((max-resolution: 144dpi),

 (-webkit-max-device-pixel-ratio: 1.5)) {

 /* styles for when the layout viewport

 is 400px wide or narrower AND

 the orientation is landscape AND

 devicePixelRatio is 1.5 or lower

 (two queries necessary) */

}

T H E M O B I L E W EB H A N D B O O K116

Width and Height
By far the most important media query you’ll use is width. Use of

height is typically restricted to specific use cases where something has

to be shown on the site’s home screen. The width and height media

queries give the width and height of the current layout viewport and

work in all browsers. After using the perfect meta viewport tag you can

reliably pull out the width of the layout viewport, which is now equal

to the ideal viewport. This is the core of responsive design.

@media all and (max-width: 400) {

 div.sidebar {

 // these div.sidebar styles

 // are used when the layout viewport

 // is 400px wide or narrower

 }

}

Height is more difficult to use, because it may take the browser toolbar

into account, and that toolbar may slide into or out of the screen as the

user scrolls. Feel free to use it, but give the browser a bit of leeway in

determining the height.

Ems in Media Queries
The em unit in media queries deserves some special attention. At the

time of writing it’s very popular, but to my mind that popularity is

somewhat overrated, and although there’s nothing wrong with ems,

they aren’t inherently superior to pixels, either, except in one very spe-

cific use case.

V I E W P O R TS 117

In CSS 1em is exactly equal to the font size; for a 14px font, 1em will be

14px wide. The term font size usually equates to the font size of the el-

ement your CSS refers to, but in the context of media queries it means

the root font size of the document; that is, the font size of the html

element. Media queries are page-wide, after all, instead of applying to a

specific element.

The default font size of the html element is 16px, so by default 1em is 16px

wide. Of course, you can change the root font size: if you set it to 12px, 1em

will be 12px wide; if you set it to 20px, 1em will be 20px wide, and so on.

On mobile, the root font size doesn’t change when you zoom. Zooming

is the process of enlarging CSS pixels, but that process has nothing to

do with font sizes, so 1em will continue to be the same number of CSS

pixels regardless of how much the user zooms. On mobile, then, there’s

nothing that makes ems inherently superior to pixels.

On desktop, it’s more complicated. The page zoom we described above

also increases the size of the CSS pixels without touching the font size,

so here, too, ems are not superior to pixels. However, Firefox and Safari

still support font size zooming, where only the font size is increased. So

here is a genuine use case for ems over pixels. Another use case is the user

setting a different, usually larger, font size in their browser preferences.

Here, too, ems give you a better reading than pixels. Unfortunately, I do

not know how many users on either mobile or desktop do so.

In other words, ems are superior to pixels only if the root font size of

your site is likely to change and you want your layout to respond to

that. If this is the case for your website, use ems. In all other cases it

doesn’t really matter if you use ems or pixels. Ems still work fine, and

T H E M O B I L E W EB H A N D B O O K118

to some they may be more logical than pixels when describing a layout,

but they have no inherent superiority over pixels.

device-width and device-height
You should avoid device-width and device-height because they al-

ways, in all browsers, use the values of screen.width/height. As we’ll

see later, these JavaScript properties may give either the dimensions of the

ideal viewport or the physical number of device pixels. Thus, it’s impossi-

ble to predict whether you’ll get the right or the wrong information. That

makes device-width and device-height very dangerous to use.

device-pixel-ratio and resolution
We’ve already discussed resolution, and how it’s the ratio of the ideal

viewport to the screen size in device pixels. Thus the resolution

media queries are useless for determining anything about the physical

size of the device, although they can be used to determine if you want

to send high-res images because the user is on a Retina-like screen.

There’s a browser compatibility problem here: the WebKit-based browsers

need -webkit-device-pixel-ratio, while all other browsers need

resolution. Although resolution will win out in the long term, for

the moment you still need -webkit-device-pixel-ratio as well.

In Fall 2013 I conducted a viewport survey among my readers, and one of

the questions I asked was which resolutions they checked for in their media

queries. More than half of the respondents checked for a device pixel ratio

of 1.5. So this seems to be some sort of emerging industry standard. See

the survey results for yourself at http://smashed.by/mwhb7.

V I E W P O R TS 11 9

There’s an additional trick: the unit. -webkit-device-pixel-ratio

does not expect a unit; it’s just an integer that corresponds to

window.devicePixelRatio. On the other hand, resolution ac-

cepts the dpi and dppx units. We’ve already discussed those: 1dppx is

equal to a device pixel ratio of 1, while 96dpi is equal to 1dppx. DPI is

fully supported by all browsers while dppx is not, so it’s best to use dpi.

This is a cross-browser resolution check:

@media all and ((-webkit-min-device-pixel-ratio: 1.5),

 (min-resolution: 144dpi)) {

 // styles for when resolution is 1.5 or higher

}

Again, use a min- prefix here. You want to know if the resolution is 1.5

or higher, and not if it’s exactly 1.5.

orientation
Let’s do an easy case: orientation. This media query is meant for de-

tecting the current device orientation, and it recognizes the keywords

portrait and landscape. All browsers support it. No prefixes, no

complicated stuff. So use it if you need it.

aspect-ratio and device-aspect-ratio
aspect-ratio and device-aspect-ratio give the aspect

ratios of the layout viewport and screen.width/height, respec-

tively. These ratios are expressed as a fraction; for example, 3/4 or 16/9.

Be aware that incoming or exiting browser toolbars may change the

layout viewport’s aspect ratio.

T H E M O B I L E W EB H A N D B O O K1 20

JavaScript
To close this long and complex chapter we need to talk about JavaScript

properties. Just about everything we covered in this chapter can be

read and used by JavaScript, provided you know the correct properties

to query.

I tested media queries extensively, and it turns out that all of them are

slaves to certain JavaScript properties in just about all browsers. Also,

you need to know about the orientationchange and resize events.

Once upon a time, when the height of fashion among web developers

was bearskin and our WYSIWIG editor of choice a clay tablet, Netscape

and IE fought for dominance on the browser market. They used pro-

prietary extensions to force web developers into their camps, so that

many interesting JavaScript properties actually had two forms: one for

Netscape and one for IE.

This also happened to the viewport properties. Netscape insisted

that it was window.innerWidth, while IE maintained it was

document.documentElement.clientWidth. JavaScripters had to

use both if they wanted to read out the browser window size. Finding

the screen size was easier: both browsers used screen.width.

Time went on, the importance of standardization was discovered,

and in the spirit of detente the browsers started to support each

other’s properties. Nowadays, all desktop browsers support both

V I E W P O R TS 1 21

window.innerWidth and document.documentElement.cli-

entWidth, and the only difference is that the first property includes

the scrollbar width while the second excludes it.

While this was a nasty situation at the time, it’s actually very useful to

have several properties now that we have several viewports to measure.

We can use one property pair for each of the viewports and expose all

of them to curious web developers. Thus we arrive at today’s system:

1. document.documentElement.clientWidth/Height returns

the dimensions of the layout viewport. Universally supported.

2. window.innerWidth/Height returns the dimensions

of the visual viewport. Near-universally supported.

3. screen.width/height returns the dimensions of the

ideal viewport. Serious browser compatibility problems.

The Layout Viewport
document.documentElement.clientWidth/Height is univer-

sally supported and gives you the dimensions of the layout viewport.

That can be very useful in cases where you want to use JavaScript, and

not a media query, for your page logic. For instance, the following is the

JavaScript equivalent of @media all and (min-width: 600):

if (document.documentElement.clientWidth >= 600) {

 // load Twitter and Facebook widgets

}

T H E M O B I L E W EB H A N D B O O K1 2 2

This is sometimes useful, as JavaScript is a much better tool for some

jobs than media queries. For example, if you want to download and

show a third-party widget only if the layout viewport is wide enough,

you should use JavaScript. In CSS, the best you can do is set display:

none, but many browsers will still load the assets and take up valuable

bandwidth, even though they’re not used in the page. In JavaScript, you

can postpone the download until you’re certain the layout viewport is

in fact wide enough to display the widget properly.

The Visual Viewport
window.innerWidth/Height is well-supported, but not universally.

The most serious problems are with Android WebKit 2 and the proxy

browsers. Fortunately, finding the visual viewport dimensions is some-

thing you don’t want to do too often. Right now, I think it’s only useful

when you have a complicated layout where the zoom level matters a lot

— very rarely, in other words. But if you need it, it’s there.

The Ideal Viewport — or the Screen Size
And then we get to the real problem: screen.width/height. This

can mean two things, depending on the browser:

1. The dimensions of the ideal viewport.

2. The screen size in device pixels.

In practice this means that you can’t use screen.width/height at

all, since you never know what you’re going to get. Even worse, it

affects analytics tools, too. Such tools commonly read out

screen.width/height to give you an overview of the screen resolu-

tions users of your site have. Unfortunately, you’ll sometimes get the

V I E W P O R TS 1 2 3

ideal viewport instead of the physical resolution you’d expect. Thus,

resolution statistics in analytics tools are completely unreliable and

should be ignored.

Although I think the first definition, dimensions of the ideal viewport,

is going to win out in the future, that hasn’t actually happened yet —

and Android WebKit, not being maintained any more, will never use

the ideal viewport definition. So using screen.width/height is not

really possible until Android WebKit has died out.

Remember that the device-width and device-height media que-

ries use the values screen.width/height provide, regardless of the

definition the browser uses. All the problems sketched above also go for

these media queries.

devicePixelRatio
We’ve already encountered window.devicePixelRatio: its unitless

value gives the ratio between the physical screen size in pixels and the

ideal viewport. The device-pixel-ratio media query uses the same

value, as does the resolution media query if you use the dppx unit.

Changing the Meta Viewport Tag
In most browsers it’s possible to change the contents of the meta

viewport tag. Assuming the meta viewport is the first meta tag in your

document, do this:

var	meta	=	document.getElementsByTagName('meta')[0];

meta.setAttribute('content','width=400');

T H E M O B I L E W EB H A N D B O O K1 24

Now the layout viewport width is set to 400 in most browsers. At the

time of writing, IE and Firefox don’t support this, and neither do old

BlackBerrys, but otherwise support is widespread. Note that it is not

possible to remove the meta tag entirely so that the layout viewport

returns to its default width. However, you could set it to a fixed value

of, for instance, 980px or 1,024px if you want to offer “go to desktop

layout” functionality.

The orientationchange Event
The orientationchange event fires whenever the user changes the

device orientation — in all WebKit- and Blink-based browsers. At the

time of writing, neither IE11 nor Firefox 31 support it.

The resize Event
The resize event fires whenever the viewport is resized. But which

viewport? Not surprisingly, browsers disagree on that.

True browser compatibility junkies will appreciate the following conun-

drum: if I rotate the device 180 degrees, should the orientationchange

event fire or not? On the one hand, the device’s orientation changes. On the

other hand, the final orientation is the same as the starting orientation: you

go from portrait to portrait or landscape to landscape. Browsers come to

different conclusions. What do you think?

V I E W P O R TS 1 2 5

The ideal viewport cannot be resized: it is what it is. That leaves the

layout and visual viewports. It turns out that most browsers fire the

resize event when the layout viewport is resized, but not when the

visual viewport is resized (that is, the user zooms). This rule is not

absolute, and to make things more complicated the several methods of

resizing the layout or visual viewport may not all fire a resize event.

To make things even more complicated, Safari fires a resize event

when the html element, which is not a viewport, is resized by adding

or removing content. This is definitely something that shouldn’t happen.

You can find the gory support details on my site. For now, we can say

that it’s best to distrust the resize event on mobile. It is too erratic

across browsers to be of much use.

With the viewports explained we can now turn our attention to a

few CSS declarations that are different on mobile and desktop.

Concept Description JavaScript property Media query Meta viewport Browser compatibility

Physical screen The dimensions of the device
screen in device pixels.

Officially none;
sometimes screen.width

and screen.height

Officially none; some-
times device-width and

device-height
- See Ideal viewport.

Layout viewport
The size of CSS’s initial contain-

ing block. All percentage CSS
widths are derived from it.

document.document
Element.clientWidth

and -Height
width and height

width directive

sets its width
all

Visual viewport
The current size of the part of
the page the user sees on the

screen. Influenced by zooming.

window.innerWidth
and -Height

- - most

Ideal viewport

The dimensions the layout
viewport should get in order

to deliver a perfect user
experience for the device.

screen.width and
screen.height, but
not in all browsers

device-width and
device-height, but not

in all browsers

width=device-
width sets layout
viewport to ideal

viewport

In some browsers, JavaScript
and media queries use the ideal
viewport dimensions; in others,

the physical size of the screen
in device pixels.

Resolution
The ratio between the physical

screen size and the ideal
viewport size.

window.devicePixelRatio
-webkit-device-pix-

el-ratio and resolution
-

WebKit-based browsers need
the first media query; the oth-

ers the second. Eventually only
resolution will remain.

Orientation The current device orienta-
tion: portrait or landscape. window.orientation orientation -

Media query supported by
all. JavaScript property

supported by most.

Zooming The zoom factor of the page,
relative to the ideal viewport.

Sometimes screen.width
/ window.innerWidth

-
initial-scale,
minimum-scale,
maximum-scale

JS very unreliable. Meta
viewport directives decently

supported, but issues in
Android WebKit and IE.

Concept Description JavaScript property Media query Meta viewport Browser compatibility

Physical screen The dimensions of the device
screen in device pixels.

Officially none;
sometimes screen.width

and screen.height

Officially none; some-
times device-width and

device-height
- See Ideal viewport.

Layout viewport
The size of CSS’s initial contain-

ing block. All percentage CSS
widths are derived from it.

document.document
Element.clientWidth

and -Height
width and height

width directive

sets its width
all

Visual viewport
The current size of the part of
the page the user sees on the

screen. Influenced by zooming.

window.innerWidth
and -Height

- - most

Ideal viewport

The dimensions the layout
viewport should get in order

to deliver a perfect user
experience for the device.

screen.width and
screen.height, but
not in all browsers

device-width and
device-height, but not

in all browsers

width=device-
width sets layout
viewport to ideal

viewport

In some browsers, JavaScript
and media queries use the ideal
viewport dimensions; in others,

the physical size of the screen
in device pixels.

Resolution
The ratio between the physical

screen size and the ideal
viewport size.

window.devicePixelRatio
-webkit-device-pix-

el-ratio and resolution
-

WebKit-based browsers need
the first media query; the oth-

ers the second. Eventually only
resolution will remain.

Orientation The current device orienta-
tion: portrait or landscape. window.orientation orientation -

Media query supported by
all. JavaScript property

supported by most.

Zooming The zoom factor of the page,
relative to the ideal viewport.

Sometimes screen.width
/ window.innerWidth

-
initial-scale,
minimum-scale,
maximum-scale

JS very unreliable. Meta
viewport directives decently

supported, but issues in
Android WebKit and IE.

Chapter 5

CSS

C S S 1 31

Chapter 5

CSS
Just like their desktop cousins, mobile browsers support CSS. Their

support doesn’t differ all that much from the desktop: all rendering en-

gines, and thus all browsers, support margins, colors, font sizes, floats,

and all other stock CSS declarations. You won’t have any problems with

declarations like that (except for the ones caused by the mobile screen

being much narrower than the desktop screen, but those are not tech-

nical differences).

Still, there are a few cases where CSS support on mobile browsers is

different by necessity, and in this short chapter we’ll take a look at a

few of them. Although these declarations are interesting in themselves,

and studying them will teach you important lessons about mobile

web development, the main point I’m trying to get across is the kind

of thinking mobile browser vendors must engage in before support-

ing them. Their decisions influence the way you can use CSS in their

browsers, so it’s important to understand their point of view.

T H E M O B I L E W EB H A N D B O O K1 3 2

There are four main reasons why support for CSS declarations may

differ from desktop to mobile:

1. The use case they serve does not exist on touchscreens, or does

not fit there very well. Example: :hover.

2. The viewport is involved, but the specification fails to mention

which viewport. Example: the vw/vh units.

3. They require an independently scrollable layer, which is much

harder to achieve within the constrained resources of a mobile

phone than on a desktop computer. Example:

background-attachment.

4. Hardware constraints, especially when it comes to memory

and GPU. Transitions and animations, notably, may fail in such

environments. This is a device problem, and not a browser

problem, and is therefore different from the rest.

The CSS specifications are not always very useful in these situations.

Most of them handle touchscreen or mobile use cases badly because

they were written in the context of mouse, keyboard, and traditional

display. Sometimes that context doesn’t matter, but at other times it

matters a lot. We’ll encounter a few problems below.

Finally, a note on browser compatibility. As usual you can find the com-

patibility information you need on this book’s companion site at

http://quirksmode.org/mobilewebhandbook. In the rest of this chap-

ter I’m quite vague about compatibility details because they’ll likely

change between me writing this book and you reading it. If you need

exact information, look it up on the site.

C S S 1 3 3

position: fixed
Let’s start with position: fixed,

a declaration many web developers would

love to use on their mobile sites but can’t

— and maybe shouldn’t. The W3C has the

following to say on the subject in the CSS 2

specification, first published in 1998, well be-

fore the mobile web amounted to anything:

“The box’s position is calculated according to

the ‘absolute’ model, but in addition, the box is

fixed with respect to some reference. […] The box

is fixed with respect to the viewport and does not

move when scrolled.

Which viewport is meant here? The spec doesn’t say so explicitly, but

a fixed layer is expected to stay in sight, so it’s logical that the visual

viewport is meant here. Of course, the fact that it’s logical doesn’t nec-

essarily mean it’s implemented everywhere.

Although mobile browsers already recognized position: fixed

when I started my mobile research in 2009, their support was weird

and buggy. In particular, many browsers positioned fixed elements

relative to the layout viewport, and not the visual one. It took until

2013 for the first perfect implementation to be released in Chrome and

Opera.

Positioning a fixed layer relative to the layout viewport may seem like

a rather gross error that even a cursory study of the spec should have

Since position:

fixed support differs

so much among mobile

browsers, and illustra-

tions don’t help much in

conveying what actually

happens, I prepared a

few videos on the com-

panion site. These will

show you what’s going

on; something that no

amount of words can do.

T H E M O B I L E W EB H A N D B O O K1 3 4

prevented, but the problem is something else entirely. Although the

fixed layer doesn’t scroll when the user swipes, the rest of the page

does. So in order to support true fixed positioning, browsers must be

able to scroll layers independently of each other. Back then browsers

couldn’t do that, so they had to choose between a bad implementation

of position: fixed or none at all. They chose the bad one.

So old browsers get it wrong,

and some new ones get it right.

Unfortunately that’s not all: there

are a lot of implementations

spanning the entire spectrum

from mostly wrong to mostly

right, while Safari has its own

unique take that doesn’t resemble

anyone else’s and doesn’t make a

lot of sense. See the companion

site and the videos for a complete

overview.

And now for the real question: what

happens when the user zooms? The

spec is silent on this, but since the

layer is fixed relative to the visual

viewport it makes sense to let it

scale with it so that, for example,

one with width: 50% continues to cover one half of the visual viewport

regardless of zoom level. This may be what you want, but it could also be

surprising.

Bing.com uses a fixed bar at the top of the

page that doesn’t interfere with the rest of

the page.

C S S 1 3 5

So what is a poor web developer to do with position: fixed? A

tasteful top bar of 100% width and not too much height, containing two

or three links or other items seems

the most you can hope for. The fact

that it’s small means it won’t take up

too much valuable screen real estate,

and the fact that its coordinates

are 0,0 solves a lot of compatibility

problems.

Still, in my opinion, its use is some-

what overrated. The problem with

fixed elements is that they take up

so much space on the small screen.

Although it could make sense to keep

your branding in view all the time,

it’s only really possible with simple

sites. So be careful how you use it.

For a long time I have wondered

whether mobile is different enough

from desktop to warrant a different

fixed implementation; call it

position: device-fixed (see

http://smashed.by/mwhb13 for my ar-

ticle). It would work like fixed does

in modern browsers, but it would

not scale the font (and possibly other

elements such as images). Thus, the device-fixed layer would es-

sentially stay the same, no matter how the user zooms.

The Holtzbrinck site restricts itself to the

“hamburger menu” at top-right. Here, as with

Bing.com, the point is to keep one or two vital

links in view all the time, while taking up as little

space as possible. This use of position: fixed

is somewhat different from the desktop, where

a fixed layer usually contains a lot of extra

features. Such layers don’t work on mobile

because of the small screen, so restricting

yourself to important features works best.

T H E M O B I L E W EB H A N D B O O K1 3 6

To my surprise, device-fixed was

implemented in IE11. Although at the

time of writing it suffers from lag and

isn’t quite ready for prime time yet,

the Microsoft implementation at least

allows you to figure out if this is a

feature that’s useful enough to retain.

overflow: auto
The case of overflow: auto is the

clearest example of layers that have to

scroll separately from the rest of the

page. If an element has this style it must

be scrollable separately from the rest

of the page. If a browser does not allow

scrolling, users cannot access part of the

content, and that’s of course very bad.

Once upon a time many mobile

browsers did this wrong. They cut off

the content at the right spot, but did

not allow independent scrolling and

thus made parts of pages inaccessible.

Meanwhile things are getting better:

just about all mobile browsers support

overflow: auto correctly. The most

important exceptions are the proxy

browsers — their clients will never

support independent scrolling be-

cause they show only a single image.

This page contains an overflow:

auto, and one of the paragraphs is

currently hidden. There’s no way of

knowing that as a user, unless you

happen to scroll in the right place.

A border could help to distinguish the

element, but if the browser doesn’t

support independent scrolling of the

layer, the user still cannot see the

hidden paragraph.

C S S 1 37

The old, Presto-based Opera Mobile found a solution that does not

require scrolling: if overflow: auto is defined, just stretch up the

element until all the content fits. This is not beautiful — in fact, it

might break some layouts — but it’s an accessible one. I wonder why

the proxy browsers, Opera Mini in particular, never implemented this.

All in all overflow: auto is not very suited to

mobile interfaces, and even though it might

technically work, it’s best to quietly forget about it.

overflow-scrolling
Although most browsers have a pretty smooth,

kinetic scroll that you can use straight away,

Safari and a few other browsers do not. Their

scrolling is stilted and non-kinetic. This is

caused by processor constraints: it’s more com-

putationally expensive to do a kinetic scroll, and

disabling it by default helps save battery life.

Still, users and web developers want a nice

scroll effect. That’s why Apple created (and

BlackBerry copied) the -webkit-over-

flow-scrolling: auto CSS declaration that

adds kinetic scrolling to an element. Thus, expensive kinetic scrolling

is only enabled when the web developer explicitly asks for it.

I wonder if this declaration will make a lot of difference in the long

term, since web developers will start to apply this declaration to all

their scrolling layers, and we’ll end up with the same result as when

browsers support kinetic scrolling by default.

Opera Classic, which doesn’t support

independent scrolling of the layer,

stretches up the element so that the

content is visible. Although this might

break some layouts, it’s the least bad

solution when it comes to accessibility.

T H E M O B I L E W EB H A N D B O O K1 3 8

background-attachment
A similar problem exists for background-attachment. There are

three values, two of which create a separately scrollable background

image:

1. scroll: the default. The background image scrolls with the page.

2. fixed: the background image is fixed relative to the viewport, so

that the element serves as a kind of window on the image, and

scrolling effectively pans that window so that you see a different

part of the image. Question: which viewport?

3. local: the background image scrolls with the element.

It’s clear that any local background image is an independently scroll-

ing layer since it scrolls with the element, and not with the page. But

what about fixed? Which viewport is it relative to? If it’s the layout

viewport, it’s indistinguishable from scroll, so it’s clear that it should

be fixed relative to the visual viewport. That, however, again creates an

independently scrolling layer.

The problem once more is that

mobile browsers cannot support too

many independently scrolling layers.

Both fixed and local could create

many of them on one page, which is

why most browsers support only one

of the two. In my tests I found only

a single browser, UC, that supports

both, and a few browsers that sup-

port neither.

Again, illustrations don’t

help much in conveying

what actually happens

with background-

attachment. So I added

a few more videos on the

companion site to show

you what’s going on.

C S S 1 3 9

In other words, background-attach-

ment is unreliable on mobile and I advise

you not to use it — or to make sure that the

effect is nice to have instead of required.

Besides, even if all browsers implemented

it, background images in desktop-first web-

sites could start to overlap due to the lack

of space on the mobile screen. So that’s an

extra reason for not using this declaration.

vw and vh
The vw and vh units denote percentages of

the viewport. Thus, 50vw means 50% of the

viewport width; and 20vh means 20% of

the viewport height. But which viewport?

All things considered, it should mean the

layout viewport. If it were the visual one,

the widths and heights of elements would

change every time the user zooms, and

apart from being computationally very

expensive it would not make sense at all to

the user.

Not many mobile browsers support these

units as yet. At the time of writing only

the Blink-based browsers, IE, and Firefox

on Android support them correctly. A few

browsers support them relative to the visu-

al viewport, which gives a weird effect, and

Safari does its own thing by sometimes,

Chrome gets it right: the units are re-

solved relative to the layout viewport,

and thus don’t change.

BlackBerry gets it wrong: the units

are resolved relative to the visual view-

port, and thus change when the user

zooms. This is cool, but likely not what

the user wants.

T H E M O B I L E W EB H A N D B O O K14 0

but not always, making them rela-

tive to the size of the html element,

which may change when more

elements are added to the page.

(This behaviour is rumored to be

removed from iOS 8, but I haven’t

tested that myself.)

So vw and vh are not really ready

for mobile use. That’s a pity, since

they could be very useful units for

responsive designs. (In fact, I sus-

pect the units were invented specifi-

cally for this purpose.)

:active and :hover
Finally we have to discuss :active and especially :hover — desktop

concepts that translate fairly badly to touchscreens, but that are usual-

ly safe to use because the worst that can happen is that they don’t work.

Unintended side effects do not occur.

What does :hover mean on a touchscreen? Your finger is either on

the glass or it’s not; it’s either tapping (clicking) an element, or it’s

completely absent. Technically, it’s possible to detect the coordinates of

a finger hovering above the device, but few devices do so, and the ones

that do don’t seem to share this information with other browsers. And

even if all devices handled this properly, your finger would still be over

the hover effect while it’s taking place, so you wouldn’t be able to see it.

Safari gets it weird: the units are re-

solved relative to the html element. If

that element grows because content is

added to the page, the units change.

C S S 141

Still, :hover is so widely used that mobile browsers felt forced to

implement it, kind of. That’s why :hover styles are added to an

element when the user touches it, at the end of the event cascade

that we’ll encounter in the Touch And

Pointer Events chapter. When the user

subsequently touches another element,

the :hover styles are removed from the

original element. (The mouseover and

mouseout events are treated in the same

way — rightly so, since they’re the Java-

Script equivalents of :hover.)

As to :active, on desktop it applies

to elements that the user is currently

clicking on (or focusing on with the

keyboard, but that’s a more complicated

use case). A one-to-one translation from

desktop to mobile would be applying the

styles when the user touches an element,

and removing them when that touch

stops. This is exactly what the supporting

mobile browsers do, although the effect

will usually be hidden by the user’s fat

finger. Many browsers don’t support it at

all, however, and I find it hard to argue

with them.

On its latest Galaxy models (S4 pic-

tured here), Samsung implemented its

own hover effect, where parts of the

page are enlarged, and the details are

shown well above your fat finger. (Turn

it on in Settings → My Device → Air

View.) That’s cool, and it might even

be useful, but it does not trigger CSS

:hover effects, and only works in the

default browser.

T H E M O B I L E W EB H A N D B O O K142

So :hover doesn’t really work on mobile — and certainly not like

you’re used to on desktop. Whether it’s safe to use depends on what

you’re doing. If you’re just changing a link style there’s no problem: it

will occur, though maybe not at the time you expect. More problematic

are extra bits of content that pop up when the user hovers. This effect

may not work on mobile, and even if it does it’s unintuitive, and the

content may be hidden under the user’s finger. You should find another

solution for showing extra content.

Another safe technique is the combination of :active and :focus,

which on desktop is commonly used to create a kind of hover-with-key-

board effect. You can use this on mobile. :focus works fine since all

browsers support it, except the proxy browsers. Proxy browsers would

have to go back to the server to change to :focus styles, and the cre-

ators decided the effect is too small to warrant a round trip.

Transitions And Animations
Finally, a quick word about transitions and animations. The problem

with them is not the browser but the devices. Browsers support them

fine, but in order to create a truly smooth effect they have to be able to

connect to the device’s GPU. On modern high-end smartphones this

is no problem, but some older or cheaper phones may not have the

required hardware or system APIs, leading to stilted effects.

Since this depends on the device, it’s not a problem that can be cap-

tured in a browser compatibility table. One browser on a high-end

device may support transitions and animations perfectly, only to fail

when it’s installed on a low-end device.

C S S 143

As a general rule, test on your oldest and crappiest device whenever

you use transitions and animations. Besides, even modern devices may

falter when confronted with too many animations on one page. Al-

though they allow access to the GPU, their hardware is still slower than

desktop hardware. My general advice is not to use animation-heavy

pages on mobile; if you absolutely have to, test them on a wide range of

devices.

We have now dealt with some of the most important unique CSS

features of mobile browsers, and it’s time to turn to JavaScript and

the touch and pointer events.

T H E M O B I L E W EB H A N D B O O K14 4

Chapter 6

Touch And Pointer Events

TO U C H A N D P O I N T ER E V EN TS 147

Chapter 6

Touch And Pointer Events
When Apple released the first true touchscreen browser back in 2007, it

also delivered touch events to monitor the user’s touch actions.

There are W3C recommendations for both touch and pointer events, so

both are web standards. They can be found at http://smashed.by/mwhb8

and http://smashed.by/mwhb9, respectively.

However, it seems the W3C is transitioning away from touch events and

towards pointer events. The Web Events Working Group that produced the

touch events specification has been disbanded and work on the spec had

ceased, while the Pointer Events WG is still a going concern. Pointer events

are becoming the standard as far as the W3C is concerned.

Google and Mozilla are working on an implementation of pointer events —

maybe they’re already finished by the time you read this. See the Chrome

discussion at http://smashed.by/mwhb10 and the Firefox discussion at

http://smashed.by/mwhb11

T H E M O B I L E W EB H A N D B O O K14 8

Most other browser vendors copied them, except for Microsoft, which

invented pointer events. These two sets of events are the topic of this

chapter.

Although at first sight the pointer events may seem yet another in-

stance of IE-is-different-just-because, that’s not the case. Microsoft

is making an interesting philosophical point here that we’ll discuss

at length. At the time of writing Google and Mozilla are considering

implementing pointer events, and the W3C is transitioning from touch

to pointer events as well.

In most respects, touch and pointer events are normal JavaScript

events. They fire when a touch action occurs, you can assign event

handlers to them, and their event objects give useful information about

the touches. There are a few technical differences between touch and

traditional mouse or keyboard events. Also, for reasons of backward

compatibility, touchscreen devices must fire mouse events because so

many websites depend on them. But when do you fire mouse events

on devices that don’t have a mouse? Part of this chapter is devoted to

discussing these issues.

The rest of the chapter is more philosophical in nature. Along with the

iPhone, Apple introduced a new interaction mode, touch, which now

coexists with the traditional mouse and keyboard interaction modes.

Web developers must make sure their sites work with all three. At

first sight, touch events seem to be roughly the same as mouse events.

What are the differences? Do we need separate events for separate

interaction modes?

TO U C H A N D P O I N T ER E V EN TS 149

Touch Events
Let’s start with touch events, since they are better supported than

pointer events. Later, we’ll see that the pointer events are pretty similar.

There are four touch events:

1. touchstart, which fires the instant the user’s finger touches the

screen.

2. touchmove, which fires continually while the user is moving

their finger.

3. touchend, which fires the instant the user’s finger releases the

screen.

4. touchcancel, whose meaning depends on browser. Discussed

below.

These events are supported by most touchscreen browsers, with the

main exception being IE. A few very old or bad browsers, such as

Symbian Anna’s default browser, don’t support them. The proxy brows-

ers don’t support them either because these events don’t fit the proxy

browsing model. We discussed the reasons in the Browsers chapter.

TO U C H STA RT TO U C H E N DTO U C H M OV E

Touchstart, touchmove, and touchend. The

pointerdown, pointermove, and pointerup

events fire at exactly the same time.

T H E M O B I L E W EB H A N D B O O K1 5 0

touchcancel
I admit I do not understand the touchcancel event. It fires when a

touch sequence is canceled, but what that means is very much up to

the individual browser. For instance, Chrome fires it when the user’s

touch leaves the screen, but most other browsers don’t.

Fortunately, I have never found a good reason to use this event, and

it seems scripts and libraries hardly use touchcancel, either — the

ones that do treat it as an equivalent of touchend and include it just

to be on the safe side. Therefore, this chapter will ignore the touch-

cancel event. If you ever run into weird problems because browsers

don’t see touchend events in certain situations, you can always bind

your touchend event handler to the touchcancel event as well.

Gesture Events
In addition to touch events, Safari on iOS also implements the ges-

turestart, gesturechange, and gestureend events, while IE

has a slew of similar events. A gesture event is defined as two or more

touch events taking place simultaneously.

There are two problems with these events: no other browser supports

them, and they are rather useless. In theory it sounds great to detect

user gestures, but in practice you have to figure out what the user is

trying to achieve by studying the touch coordinates and how they

change over time. We don’t need the gesture events for that: ordinary

touch events give us the same information. For these reasons the ges-

ture events are not important and this chapter will not cover them.

TO U C H A N D P O I N T ER E V EN TS 1 51

Other Events
At one point, the touch event specification contained the touchenter

and touchleave events, which would fire if the user’s touch entered

or left a certain element. They have never been implemented, although

IE supports the Microsoft alternatives. Since these events are a good

idea, I hope they’ll make a comeback. In certain interfaces it would be

useful to know if a user’s finger slides into or out of an element.

What we could do with is a zoom event that fires when users zoom (or

rather, when they stop zooming). I’ve been been saying this since 2010,

but so far nobody has listened. Still, it would be good to know if the

user zooms — perhaps you want to change the interface a bit, or you just

want to collect zoom data in order to find out if your font is too small.

Example Scripts
We’re going to use three example scripts to show how touch and

pointer events compare to mouse and keyboard events. Studying them

will also teach you to think about interaction modes and how to port

mouse-based effects to touch and vice versa.

Drop-down Menu
The first script is a golden oldie: a drop-down menu. Like it or loathe

it, it’s ubiquitous on the web, and it’s also the perfect example script

because it encompasses so many crucial aspects of event handling.

Traditionally, a drop-down menu works with the mouse. The user

hovers the mouse pointer over an item and a menu folds out. The user

removes the mouse pointer, and the menu folds in. It should also work

with the keyboard: the user tabs to the item with the keyboard, and as

soon as it has focus (the focus event), the menu folds out; if focus is re-

T H E M O B I L E W EB H A N D B O O K1 52

moved (the blur event), the menu folds in. This is harder to implement

than the mouse effect, but it’s possible.

But how do we port a drop-down menu to touch-based interaction? Sub-

stituting touchstart for mouseover and touchend for mouseout

does not work. Touching an item folds out the menu; no problems there.

But once the menu is open, users want to touch a specific link. They lift

their fingers and the menu folds in. That doesn’t work. And if we left the

menu open ontouchend, when would it close?

The best solution for a cross-device environment is to work with the

click event. Click, and not mouseover, would open a menu, and

clicking on another menu item would close it again. As we’ll see later

in this chapter, the click event is perfectly safe, and as an additional

bonus the drop-down menu will work roughly the same with mouse

and touch.

Still, mobile browsers will have to contend with the fact that there are

tens of thousands of mouseover-based drop-down menus on the web.

Fortunately, drop-downs were a specific use case Apple had in mind

when designing the touch event cascade, and all other browsers copied

its solution, which we’ll encounter later in this chapter.

TO U C H STA RT TO U C H E N D

M O US E OV E R M O US E O U T

The traditional drop-down menu opens onmou-

seover and closes onmouseout.

TO U C H A N D P O I N T ER E V EN TS 1 5 3

Drag and Drop
Just about the polar opposite of a

drop-down menu is a drag and drop

script. The user takes an element

(mousedown), moves it elsewhere

(mousemove), and drops it (mouseup),

after which the script calculates if the

current spot is a valid drop target and

does something based on the outcome.

Porting this to touch is very simple: just make sure that mousedown is

paired with touchstart, mousemove with touchmove, and mou-

seup with touchend. This works fine, and the only minor problem is

finding the event coordinates. We’ll get back to that.

The problem here is keyboard ac-

cessibility. How do you allow key-

board users to move the draggable

elements? You could make one area

of an element keyboard-focusable,

and once the user focuses on it you

can start listening to the arrow keys.

Technically this is not very difficult,

but the user experience goes down

in flames. This problem is essentially

unsolvable: the drag-and-drop met-

aphor is based on mouse or touch

interaction, and just doesn’t work on

keyboard.

Drag and drop is pretty intuitive with the

mouse, but even more intuitive with touch.

In case you’re curious, here’s a script that

implements drag and drop for mouse

and keyboard. I wrote it a long time ago:

http://smashed.by/mwhb14. The

keyboard drag and drop is not really intu-

itive, but I haven’t found a better solution

yet. Adding the touch events to this script

is very simple, and is left as an exercise

for you.

T H E M O B I L E W EB H A N D B O O K1 5 4

Scrolling Layer
In 2011 I needed a horizontally scrolling element that worked on all

devices. Back then, this required a script, so I wrote one. Meanwhile,

native scrolling has improved such that a script is no longer necessary;

we saw that in the CSS chapter. Still, a scroll script is a useful example,

so we’ll pretend we still need it.

Writing the scroll script itself was not a

problem. Ontouchstart, calculate the

current position of the scrolling element

and initialize the other event handlers;

ontouchmove, scroll the element the

same number of pixels as moved by

the touch; ontouchend, run a special

function that calculates a pleasant decel-

eration, and once the element comes to

a stop the function ends. Easy. Took me

about two hours.

But what about non-touch devices? To get it working I had to translate

the interaction from touch to mouse and keyboard. Keyboard was easy.

I just listened to keydown events, and scrolled the element when the

user used the left or right arrow keys. This may not be easily discover-

able (I hate explanations of this sort of functionality and never include

them), but formally the script is now keyboard-accessible.

But what about the mouse? Technically, it’s trivial to add the mouse-

down, mousemove, and mouseup events to the script, but the interac-

tion would be very odd. The user would have to move over the element

with the mouse button depressed in order to scroll. This is the same

The speaker photo bar

can scroll horizontally.

TO U C H A N D P O I N T ER E V EN TS 1 5 5

interaction as for drag and drop, but in the case of a scrolling layer it’s

not intuitive.

I could use the old-fashioned arrows to the left and right of the scroll-

ing element, where mousing over the arrows would engage the scroll

script, but that would be visual clutter. Besides, I’d really have to hide

the arrows when the user used touch or keyboard, but I couldn’t figure

out how to do that safely and correctly. (We’ll get back to this problem

later.) In the end, I decided not to create a mouse interaction at all.

Events And Interaction Modes
Back in 1996 Netscape introduced mouse events and the famous

mouseover effect, and web developers saw that it was good. Then

accessibility specialists spoke up, pointing out that some people do not

use a mouse, and that browsers also had keyboard events. Some web

developers complied, and from that moment on they coded for two

interaction modes: mouse and keyboard. Then Apple added the touch

interaction mode, bringing the total number of interaction modes to

three.

Web developers must make sure that their sites work with all three

interaction modes. Sometimes it’s easy, sometimes it’s hard, but it’s

always necessary — not only for your current websites, but also to start

thinking about the translation of a UI element to the various modes. I

hope the notes I gave for the example scripts show you how to think

about these issues.

There’s no reason why we couldn’t have many more interaction modes

in the future. Take the Xbox Kinect, which translates body movements

to screen actions, so that you can use your hand to steer a cursor on the

T H E M O B I L E W EB H A N D B O O K1 5 6

screen. Technically, steering a cursor means using mouse events, but

from a user’s perspective it might count as a new interaction mode. It

feels different, after all.

Cars, fridges, wearables, and any other kind of emerging device may

bring new interaction modes to users and web developers.

doorclose event, anyone? (In fact, inventing new JavaScript events is

a fun game for post-conference parties.)

Thinking about interaction modes and JavaScript events leads to three

questions:

1. Does every interaction mode need its own events?

2. Will devices support JavaScript events for legacy interaction

modes even if they don’t make sense on the device?

3. How do you find out which interaction mode(s) the device

supports, or the user is currently using?

Right now, the answers are: yes, yes, and it’s complicated. Still, the first

answer might become no in the near future. Look again at the Kinect:

will we have entirely new handwave events, or will we use pointer and

mouse events? Technically, a cursor is a cursor, no matter how the user

moves it.

Event Equivalents
Right now, each interaction mode has its own set of events. Still, that

does not mean they are totally and irreconcilably different. In fact,

there are equivalences between certain events. The table gives a

general overview.

TO U C H A N D P O I N T ER E V EN TS 1 5 7

Event equivalents

It’s clear that the touch sequence touchstart–touchmove–

touchend resembles the mouse sequence mousedown–mousemove–

mouseup and (up to a point) keydown–keypress–keyup, and that’s

not coincidental. All three interactions can be described as start–move–

stop, and thus the event sequences are pretty similar. (Then we don’t

need different events, right?)

Still, sometimes two of the modes resemble each other, but not the

third. In a drop-down menu, mouse and keyboard are similar, while

touch is different. In a drag and drop script, mouse and touch are

nearly the same, but keyboard is very different. And the three don’t

resemble each other much in the scrolling layer example. (So we need

different events after all, right?)

Finally, there’s the problem of mouseover and mouseout. Focus

and blur are their keyboard equivalents, more or less, but there is no

touch equivalent. In fact, as we saw in the CSS chapter, the concept of

hovering does not exist on touchscreen devices.

Mouse Touch Keyboard

mousedown touchstart keydown

mousemove touchmove keydown/keypress

mouseup touchend keyup

mouseover - focus

mouseout - blur

T H E M O B I L E W EB H A N D B O O K1 5 8

A Touch of Difference
So event equivalence sometimes exists, depending on the context, but

touch, key, and mouse events are not the same. Since keyboard is clearly

the most distinct of the three, and web developers tend to concentrate on

mouse and touch, let’s discuss the differences between those two.

When the mouse pointer moves into an element, or the user clicks

a mouse button, it’s immediately clear what’s going on and which

events should fire. Not so with touch actions: they are overloaded with

meaning. At the instant your finger touches the screen, the OS and the

browser have no idea what’s going to happen next. Do you want to tap

the element? Or start a scroll, or a pinch-zoom action? Or do you want

to double-tap? The browser must wait a little while before assigning

meaning to your touch, and that interval is noticeable. We will get back

to this — oh boy, will we!

Several touch actions may take place simultaneously. This is impos-

sible with mouse actions: a computer has but a single mouse. Usually,

this does not matter much: most sites only support single-touch inter-

actions, which are easy to emulate with a mouse. Even if you have two

sliders on one page, they do not interfere with each other, and if the

user slides both at the same time you can treat each as an individual

system, and both systems work equally well with touch or mouse.

It’s different when a site allows, or requires, multi-touch interactions.

If a script translates several touches taking place at the same time to a

gesture, such as rotate or pinch-zoom, these effects cannot be replicat-

ed with a mouse. How much of a problem that is depends on the site

and the use case, but it’s important to be aware of it.

TO U C H A N D P O I N T ER E V EN TS 1 59

A touch event is coarser than a mouse event. The mouse cursor always

points to exactly one pixel, while your touch may overlap several of

them. Usually, the OS takes the central pixel as the one you touched

for calculating coordinates and such, and gives you a bit of leeway

for moving your finger between

touchstart and touchend —

but coming up is the horror story

of a browser that didn’t do this.

Touch events are discontinuous

while mouse events are continu-

ous. When you move the mouse

cursor from element A to element

B you have no choice but to move

over all elements in between. The

mouse movement is continuous

and can be tracked by a script. When you move your touch from A to B,

however, you usually release element A and touch element B without

handling any elements in between: touch movement is discontinuous.

This is, in fact, the problem we face while porting drop-down menus

to touch events. Drop-downs expect continuous events because they

were conceived for a mouse-only environment.

Touch events could carry a lot more information than mouse events.

For instance, a touchscreen device browser may give information about

your finger’s temperature, the radius of your touch, and the pressure you

exert. They don’t actually do so now, but that could change in the future

— especially since some property stubs are available in IE’s pointer events.

M O US E (CO N T I N U O US)

A B
TO U C H (D I S CO N T I N U O US)

A mouse cursor moving from A to B will pass through

the central element. A touch will not; the user has no

need to touch the central element.

T H E M O B I L E W EB H A N D B O O K16 0

In any case, I hope I convinced you that mouse and touch, while simi-

lar, are not the same.

Merging Touch and Mouse?
We have found that mouse and touch events are usually quite similar,

but that there are small and sometimes significant differences be-

tween them. We need this background in order to understand Micro-

soft’s pointer events and the point of view that gave rise to them.

Microsoft’s contention is that mouse and touch do not necessarily

need separate events. Therefore, the pointer events fire whenever the

user changes something with the pointer — and pointer can mean a

mouse cursor, a touch, or even a pen (or stylus). So this is Microsoft’s

take on the event equivalents:

We now have two fundamentally different approaches: Apple’s, where

mouse and touch are separated; and Microsoft’s, where mouse and

touch are integrated. For now, only IE supports the Microsoft model,

while all other browsers support the Apple model. As we saw, Mozilla

Mouse Touch Keyboard

pointerdown keydown

pointermove keydown/keypress

pointerup keyup

pointerover focus

pointerout blur

Event equivalents according to Microsoft

TO U C H A N D P O I N T ER E V EN TS 161

and Google are considering the implementation of pointer events, so

the situation might change in the future.

The reason Google considers the pointer events is interesting. Like the

Microsoft Surface, the Chromebook Pixel has a touchscreen but also

a keyboard with trackpad. Thus, both devices allow you to use mouse

and touch events in your interactions,

and even switch between the two. Web-

sites should keep track of both sets of

events, and that’s a lot easier when they

are merged into a single set.

Does Microsoft have a good idea here?

Personally, I tend to think so. It’s like-

ly that as time progresses, more and

more devices will have both mouse and

touch interactivity, so pointer events are

forward-thinking. Also, they could easily

be extended to cover other interactions

as well. Currently pointer events also work with a pen (or stylus), and

not only when a pen touches the screen, but also when you work with

Wacom tablets and such. In the future, they could easily include a

moving TV remote or Kinect gestures that steer a cursor and activate

elements such as links. (A closing door would fall outside their comfort

zone, though.) So pointer events could prove to be more future-friendly

than separate mouse and touch events.

Let’s try to implement pointer events in our three example scripts:

The Microsoft Surface is a touchscreen

tablet, but you can attach a keyboard with a

trackpad. You can switch between mouse and

touch while using a website, and that’s a use

case addressed by pointer events.

T H E M O B I L E W EB H A N D B O O K16 2

1. Drag and drop is a perfect match. Whether users employ a

mouse or touch, or even a pen, they’ll pick up an element, drag

it along, and drop it. Pointer events would certainly increase the

future-friendliness of a drag and drop script, since it’s likely we

won’t have to add any code for the Kinect, TV remotes, and other

pointer-like interactions.

2. The scrolling layer could work with pointer events. In touch

interaction mode it will function perfectly. When using a pen, the

user will press the pen on the layer, scroll it, and release it. That

makes sense as well. The mouse interaction is similar to the pen,

but picking up a layer by depressing the mouse button feels weird,

and that’s why I feel the effect is hard to port to the mouse. Still,

the problem persists whether we use separate mouse and touch

events or integrated pointer events, so pointer events don’t do any

harm.

3. Drop-down menus are the most complicated example.

pointerover and pointerout seem to be made for this use

case, but it turns out they aren’t (see below). Drop-downs just don’t

work very well with touch interaction, and switching from touch

to pointer events doesn’t change that. The best way of handling

drop-downs for touch screens is using the click event.

The examples show that pointer events work best if an interaction

is not specifically tailored to one interaction mode. Still, the fact that

the pointerType property, which we’ll discuss later, tells you what

kind of pointer you’re dealing with, allows you to deal with mouse and

touch separately, if you wish. (The property goes against the philosoph-

ical grain of the pointer events, but it’s a practical necessity.)

TO U C H A N D P O I N T ER E V EN TS 16 3

The mouseover/pointerover Problem
pointerover captures old-fashioned mouseover events and what

we could call “touchover” events: the user’s touch, which is already

on the screen, enters a certain element. pointerout does the same,

but for when the user’s finger or the cursor leaves an element. This is

the :hover problem we discussed in the CSS chapter but in a JavaS-

cript context.

Again we encounter the fundamental difference between continuous

and discontinuous events. When moving from A to B with a mouse,

the user has no choice but to enter and leave all intervening elements.

When using touch, however, the user could touch first A and then B,

and the only reason they wouldn’t do that is because they’re already

dragging something. pointerover could be useful in such situa-

tions: is the element the user just entered a valid drop target?

Despite this scenario, pointerover remains fundamentally differ-

ent from mouseover. Subtle mouseover effects, especially showing

extra information, won’t work on touchscreens because in such situa-

tions the user’s touch is unlikely to enter the element from somewhere

else. Instead, the user will likely touch the element without a preced-

ing pointerover, so the extra information will not be shown.

The solution here is to stick with mouseover and mouseout, since

they will fire during the touch interaction, just not when the user’s

touch enters or leaves an element. We’ll get back to the details later.

Still, this solution is not perfect since hovering remains an alien con-

cept in a touch environment.

T H E M O B I L E W EB H A N D B O O K16 4

Progressive Input Enhancement
Just as responsive design taught us to

design for many screen sizes, we have to

find ways to design for many input modes.

Let’s call it progressive input enhancement

for now. Unfortunately, progressive input

enhancement is a lot less clear-cut than

responsive design.

While responsive design is based on the idea that one design can adapt

itself to all screen sizes, in many cases progressive input enhancement

requires us to write separate scripts for the input modes — see, for

instance, the scrolling layer example, which essentially needs three

separate scripts for mouse, keyboard, and touch.

Besides, while screen size usually doesn’t change during the user’s

interaction with a site, input mode could very well change. A Micro-

soft Surface user may start their interactions with the mouse, switch

to touch, and switch back to the mouse again, all without leaving the

page. Your scripts have to be ready for that. And yes, that’s complicated.

Usually, this is important for tablets, but less so for smartphones,

where the user has fewer choices of input modes. Still, assuming users

will use one particular input mode during their entire interaction with

a site is a consensual hallucination. It makes our jobs as web develop-

ers easier, but it has nothing to do with murky reality.

Many thanks to Jason

Grigsby for clarifying

these concepts in my

mind. I borrowed the

term progressive input

enhancement from him,

as well as several key

thoughts in this section.

TO U C H A N D P O I N T ER E V EN TS 16 5

Responsive design can teach us a thing or two about progressive input

enhancement. When creating a responsive design, it’s a good idea to

start with the most restrictive use case: the smallest screen. Progres-

sive input enhancement will likely work the same. The most restric-

tive use case is likely to be the D-pad, which consists of four arrow

keys and usually an OK or Enter button in the middle. The good news

is that D-pads generally fire key events

and use the same key codes as the arrow

and Enter keys on a regular keyboard,

which means distinguishing D-pads from

regular keyboards is not necessary. The

bad news is that they’re still pretty restric-

tive.

The worst news is that I don’t have any

particular guidance to share. Progressive

input enhancement is so new that we

haven’t yet figured out strategies that will

work most of the time, and even bright

ideas that could help you further are scarce. You could see this as a

problem, but also as a challenge. Who knows, maybe it’s you who’ll

teach the world how to implement progressive input enhancement.

Finding the Current Interaction Mode
Possibly, progressive input enhancement will require you to detect

the user’s current interaction mode. Technically it’s possible (though

surprisingly hard) to do so, but the real question is what kind of useful

information it would give.

This is the most restrictive

input mode, and it would

be a good idea to start

designing your interactions

here.

T H E M O B I L E W EB H A N D B O O K16 6

Take, again, a Microsoft Surface user. You could detect that the user is

currently using the mouse. But will that mean that they will continue to

do so for the entire session? Not really. In fact, it seems quite likely that

they’ll use keyboard or touch at least occasionally. Or they may fold away

the keyboard (with mouse trackpad) and go touch-only. If any of those

things happens, what is the value of your interaction mode detection?

The only thing you can be reasonably certain of is that when users

start a specific action in a specific mode, they won’t switch mid-way. So

if you detect a user moving a mouse for drag and drop, it’s unlikely that

they’ll switch to touch mid-drag. But once the drag and drop is done,

the user may elect to switch to touch for their next action — or stick

with the mouse, or even go to the keyboard.

The most important thing you must do is make sure that all your in-

teractions work for all interaction modes. Drag and drop should work

for mouse, touch, and even keyboard. Once you’ve made sure it does, it

doesn’t matter any more which interaction mode the user is using.

But let’s suppose you have good reasons for finding the current interac-

tion mode. Maybe you want to gather statistics to see which mode the

users are likely to employ. So let’s go through a few cases:

• Pointer events are the easiest: they have a pointerType proper-

ty whose values can be mouse, touch, or pen. Find the current

value and you know what the user is doing.

TO U C H A N D P O I N T ER E V EN TS 16 7

• Another easy one: if any key event fires, the user is sure to use the

keyboard. That doesn’t say anything about future interactions —

the user may switch to mouse or touch at any time. Still, it gives

some useful information.

• Similarly, if a touch event fires you’re certain that your user is

currently using the touch interaction mode. Again, that doesn’t

say much about future interactions, but it’s something.

• Watch out for mouse events: they also fire when the user touches

the screen and are thus unsuited to detecting interaction modes.

Detecting mouse use is a matter of ruling out all other interac-

tion modes. If the user doesn’t use touch or keyboard, it’s likely a

mouse is being used.

There are several ways of detecting the availability of a touch interac-

tion mode. A method popularized by Modernizr, but unfortunately not

quite reliable enough, is the following:

var hasTouch = !!('ontouchstart' in window)

If the window object has an ontouchstart property the browser

supports the touch events and we can safely use them. At least, that’s

what you’d think. Although the first conclusion is true, a browser that

supports the touch events doesn’t necessarily run on a touchscreen de-

vice. The BlackBerry 6 browser, for instance, supports the touch events

even if it runs on a non-touch device. Older Chrome versions had the

same problem. And relying on touchstart leaves IE entirely out of

the picture.

T H E M O B I L E W EB H A N D B O O K16 8

The only safe way of detecting touch is to see if an actual touch or

pointer event fires. Only then you are sure that the browser supports

touch and the user is currently using it.

var	hasTouch	=	false;

document.ontouchstart = function () {

	 hasTouch	=	true;

}

document.onpointerdown = function (e) {

 if (e.pointerType === 'touch') {

	 	 hasTouch	=	true;	

 }

}

It’s best to go through the interaction modes one by one and see if

you discover anything useful. Start with pointer events, since the

pointerType property will give you usable information. Detect

touch events next, since, as we’ll see later on, a touch action also trig-

gers mouse events, so mouse events should only count if touch is not

detected. Keys come last — not for any fundamental reason but be-

cause they have to go somewhere. You could do something like this:

var	interactionMode;

document.onpointerdown = function (e) {

	 interactionMode	=	e.pointerType;

}

TO U C H A N D P O I N T ER E V EN TS 16 9

document.ontouchstart = function () {

 if (!interactionMode) {

	 	 interactionMode	=	'touch';

 }

}

document.onmousedown = function () {

 if (!interactionMode) {

	 	 interactionMode	=	'mouse';

 }

}

document.onkeydown = function () {

 if (!interactionMode) {

	 	 interactionMode	=	'keyboard';

 }

}

The ideal spot to run this check is a login screen or similar point where

all users know they must interact with the site. While users log in, you

use a script like the one above to detect which interaction mode they’re

using. Again, this doesn’t tell you anything about a user’s entire interac-

tion with your site; only about their interaction with your login screen.

But it’s something, and it may have some predictive power.

Still, even this method cannot predict which interaction mode the user

is going to use next. By far the best way of handling different interac-

tion modes remains to code for all of them to make sure mouse, key-

board, and touch users can all use your interface.

T H E M O B I L E W EB H A N D B O O K170

The Touch Action Event Cascade
That was a lot of theory. Let’s move on to practical stuff. The next few

sections will investigate several aspects of touch events, and most of

them also apply to pointer events. The chapter closes with a formal

introduction to pointer events.

It’s clear when touchstart, touchmove, touchend, pointerdown,

pointermove, and pointerup fire. What’s less clear is what to do

with the mouse events. Despite them having no meaning on pure

touchscreen devices, they’re still vital to a lot of websites and even

touchscreen browsers should fire them.

A few definitions so that we all know what we’re talking about:

Action

An action the user takes; for instance, touching an element or swiping up.

Event

A specific JavaScript event that fires in response to the user action.

Event cascade

A series of JavaScript events fired in response to one user action.

The single-tap action, in particular, causes a long event cascade.

Event handler

A snippet of JavaScript that is executed when a specific event fires.

So a touch action leads to the firing of a cascade of events, and you can

attach an event handler to one or more of them. (I advise you to usually

restrict yourself to one event per cascade.)

TO U C H A N D P O I N T ER E V EN TS 171

That’s why all browsers fire the mouse events just after the touch

events. This leads to the touch action event cascade: the series of events

that are fired when the user performs a touch action. Exactly which

events fire depends on the action the user takes, as well as on the

browser.

The Tap Action

When the user taps on an element, the following events fire:

1. touchstart/pointerdown

2. touchend/pointerup

3. mouseover

4. one mousemove

5. mousedown

6. mouseup

7. click

8. Any :hover styles are applied to the element

The exact event order is not set in stone. Android WebKit 4, for in-

stance, fires mouseover and mousemove before the touchstart

event. Older BlackBerries, as well as Nokia’s Symbian WebKit, fire

touchend around the end of the cascade instead of at the beginning.

All these differences do not really matter. In general, you create an

event handler for just one of these events, and the handler will be exe-

cuted when the user touches the screen, whatever the exact event you

use. It’s only when you use several mouse events that you can expect

problems. The solution is to use at most one mouse event.

T H E M O B I L E W EB H A N D B O O K17 2

When the user subsequently taps on another element, the mouse-

out event fires on the original element and any :hover styles are

removed. When the user subsequently taps on the same element, the

entire cascade fires again, except

for the mouseover. Apparently,

the browsers assume the mouse (as

it were) is already over the element.

That doesn’t entirely make sense,

but it’s the least bad way of imple-

menting the mouseover concept on

a touchscreen.

Take the drop-down menu: the user

touches a menu item; the event cas-

cade fires, including mouseover;

the script reacts by folding out the

submenu. Now the user touches

something else on the page: The

mouseout event fires, and the sub-

menu folds in. This is not quite the

same as what happens with mouse

interaction, but it’s the best touch-

screen browsers can do.

Other Actions
When the user does something other than tap, the event cascade is quite

different. The touchmove and pointermove events now come into

play, as do interaction-specific events such as scroll and resize. The

mouse events are generally suppressed. In theory, if the user swipes over

TO U C H STA RT TO U C H E N D

M O US E OV E R M O US E O U T

When the user touches the drop-down menu,

the mouseover event fires in the cascade and

the menu opens. When the user removes her

touch, though, the mouseout event does not

fire and the menu stays open. This is deliberate:

the user can now touch one of the links in the

menu. Touching an element somewhere else

on the page fires the mouseout event on the

dropdown menu, and it closes.

TO U C H STA RT TO U C H E N D

M O US E OV E R M O US E O U T

The traditional dropdown menu opens onmou-

seover and closes onmouseout.

TO U C H A N D P O I N T ER E V EN TS 17 3

a drop-down menu item, it will not open since mouseover is not fired.

Generally speaking, these are the event cascades:

1. Swipe action: touchstart, touchmove, touchend, scroll

2. Pinch-zoom action: touchstart, touchmove, touchend,

scroll, possibly resize

3. Double-tap action: touchstart and touchend twice, then

scroll and possibly resize

4. Touchhold action: touchstart and touchend; in a few

browsers contextmenu.

Only Safari, Blink, BlackBerry 10, the

Nokia browsers, and Firefox follow

these event cascades most of the time.

The other browsers diverge from

them, but, again, that matters little as

long as you use only one non-touch

event. IE fires the appropriate pointer

events instead of the touch events.

Some browsers fire more events. In

particular, Android WebKit 4 always

fires mouseover and mousemove,

so drop-down menus will fold out

when the user swipes or pinch-zooms.

Although this may be surprising, it

will hardly break your site. In most

practical situations these browser

differences do not matter a lot.

The contextmenu event fires

when the user right-clicks in a

desktop browser. The mobile

equivalent is touchhold; that

is, keeping your finger in place

for about a second. Unfortunate-

ly, few mobile browsers support

the contextmenu event, so

make sure your interactions

don’t depend on it.

The Viewports chapter has more

details on the resize event.

T H E M O B I L E W EB H A N D B O O K174

Safari: Canceling the Cascade
Now we come to two Safari oddities. Safari has its own take on the

event cascade: if a mouseover or mousemove event causes a content

change, Safari cancels the rest of the cascade and does not fire the

mousedown, mouseup, and click events. There are two questions here:

why mouseover and mousemove, and what does a content change

mean?

mouseover is simple: it’s because of drop-down menus. This is the

solution Safari devised for the problem of a menu item being a link.

mousemove is murkier — it seems that some sites use it in compa-

rable situations, but I’m not sure of the details and suspect that these

sites are doing it wrong. (That doesn’t matter, though; a mobile browser

must accommodate even wrong sites.)

It turns out that a content change means a DOM change, but

only if actual DOM methods such as appendChild() and

insertBefore() are used. An innerHTML change does not count.

Most style changes, notably a change in display, count as DOM

changes — again specifically because of drop-down menus.

Safari: Mouse Event Bubbling
The other Safari oddity is that mouse and click events only bubble up

to the document in specific conditions. I’m pretty sure this is deliber-

ate behavior even though I don’t understand why it was introduced.

All events in the cascade should bubble up, and do so in all browsers

but Safari. In Safari, the mouse and click events only bubble up when

one of the following conditions applies:

TO U C H A N D P O I N T ER E V EN TS 175

1. The target element of the event is a link or a form field.

2. The target element, or any of its ancestors up to but not including

the <body>, has an explicit event handler set for any of the

mouse events. This event handler may be an empty function.

3. The target element, or any of its ancestors up to and including the

document has a cursor: pointer CSS declaration.

I used to think that this was a performance trade-off — that something

in the bubbling of mouse events (which takes place every time the user

touches the screen) would slow down

the system or eat too much battery

power. But if that’s true, why don’t

any of the other browsers implement

it? Besides, just moving up the DOM

tree and checking if elements have

event handlers attached to them

doesn’t take that much time and ener-

gy, does it?

Still, this is how mouse event bub-

bling works at the time of writing. So

if you run into bubbling trouble in

Safari, if you expect a mouse or click

event to end up at the document or the body level but it mysteriously

doesn’t, add an empty event handler to the event’s target element. This

is enough:

targetElement.onclick = function () {}

Bubbling now works for all events. Weird but true.

Event bubbling is the process by

which an event moves up the DOM

tree from its target until it reaches

the document, and executes any

event handler it finds on the way.

You can set one general mouse-

over, touchstart, or click event

handler on the document and all

these events on the entire page end

up with that handler. Most events

bubble, and all browsers support it.

T H E M O B I L E W EB H A N D B O O K176

Anatomy Of A Click
The most important event in the touch cascade (and arguably in Java-

Script as a whole) is the click event. It always fires when you activate

an element; that is, when you use an element such as a link or a button

for its intended purpose: following a link, submitting a form, or whatever.

It doesn’t matter how you activate the element — the click event fires

when you click a mouse button, tap the screen, or use your keyboard.

click is really a misnomer: the event should have been called acti-

vate. However, it got its current name because it was invented with

the mouse events, and by now it’s far too late to change that.

The best news is that not only all current browsers support the click

event, but all future browsers will as well. Activating links and buttons

will always be possible, and too many websites depend on the click

event for any browser ever to consider dropping it. My golden rule is:

stick with click. If your website uses only the click event you do not

need to change anything, no matter what kind of devices hit the market.

Still, there are two problems you will encounter on touchscreen de-

vices: the infamous lag and, very rarely, severe difficulties in getting a

click event to occur.

300 Milliseconds
There is a 300 millisecond lag between touching

an element and that element doing whatever it’s

supposed to do. Fundamentally, this problem is

unsolvable because the act of touching the screen

is overloaded. At the moment a finger touches

the screen the browser cannot know if the user

An useful overview

of the problem and

several possible solutions

can be found at

http://smashed.by/mwhb12

TO U C H A N D P O I N T ER E V EN TS 17 7

wants to tap, double-tap, swipe, hold, or do something else. The only safe

course of action is waiting a little while to see what happens next.

It’s especially the double-tap that is the problem. Even if the browser

detects your finger leaving the touchscreen it still doesn’t know what

to do. Will your finger return for another tap, or was this the entire

action and should it fire the single-tap cascade? In order to be sure it

must wait a little while, and browser engineers found out that the best

value for that little while is 300 milliseconds.

Still, both web developers and users find the delay annoying. Therefore

browser vendors are searching for circumstances where it’s safe to

assume a double-tap will not take place — in other words, when users

won’t have to zoom. If that’s the case, they don’t have to implement the

delay. Many browsers remove the delay when a page is made unzoom-

able, but disabling zooming is evil and I actively discourage it.

Chrome takes a more interesting ap-

proach. If the author sets a meta viewport

with width=device-width, Chrome

is willing to assume that a double-tap

action will never take place since zoom-

ing is unlikely to be necessary. In these conditions it does not wait for a

potential second tap but fires the tap event cascade straight away.

It is important to realize that the Chrome team is making a guess here.

Sure, the theory sounds fine, but it may be wrong regardless, and the

solution may turn out not to work. Nonetheless, it’s the best solution

I’ve heard so far, and I’m glad Chrome is conducting this experiment. If

it works we’ll see other browser vendors copying it.

We’ve discussed

width=device-width

at length in the View-

ports chapter.

T H E M O B I L E W EB H A N D B O O K178

IE allows you to suppress the delay by using touch-action:

manipulation. Now double-tap zooming is not possible, and the

browser can remove the delay. We’ll get back to this bit of CSS later.

One browser that will never remove the delay is Safari, because on

iOS a double-tap is also a scrolling command. Since Apple never wants

to remove scrolling ability, it won’t be able to create circumstances in

which it’s safe to remove the delay.

Don’t try to solve this problem on your own. Technically, it’s trivial to

execute your event handlers ontouchend instead of onclick, but that

would mean you would get a weird situation when the user double-taps

in order to zoom. You can work around that, too, if you wish, but after

spending several sleepless weeks on the script you’ll find that the best

solution is to include a slight delay after the first touchend event. Back

to square one; you’ve wasted your time. The delay is here for a reason.

The Same Pixel
Once upon a time there was a phone built by an important device

vendor that shall remain nameless, for an important operator that shall

remain nameless. My job was to test a browser created by the vendor,

and so I installed a bunch of test widgets I’d created (widgets are a

now-obsolete type of web app). Many of those widgets required me to

click a button, after which the test would take place.

I couldn’t click the buttons. That is, I could touch the screen as often

as I wanted, but that rarely translated to an actual click event or

activation of the button. I spent minutes and minutes rapidly tapping

the screen in the hope that the browser would allow at least one click.

TO U C H A N D P O I N T ER E V EN TS 179

Sometimes that worked, but by that time I had usually forgotten what

I wanted to test and stared blankly at a bunch of random numbers.

It took me a while to figure out what was going on. On desktop, a

click event fires when a mousedown and a mouseup event take

place on the same pixel — when the mouse cursor does not move

between the depressing and releasing of the button. This works fine: a

mouse cursor always points to one single specific pixel, and in order to

point to a different pixel you have to consciously move the mouse.

That’s not how it works on touchcreens. Your fat finger touches the

screen, inadvertently moves a few pixels, and releases the screen. As

a result the touchstart and touchend events do not take place on

the same pixel, and this particular browser decided a click event was

not called for.

Good mobile browser vendors give users some leeway in this situation.

They allow a click event to take place even when the touchstart

and touchend didn’t take place on exactly the same pixel. My re-

search shows that they allow a finger to move between 4 and 20 pixels,

depending on the browser, before deciding that a touchmove is taking

place and click should not be fired.

You’ll occasionally encounter this problem in beta browsers — for ex-

ample, I caught traces of it in early builds of Firefox OS. You now know

what the problem is, and although you can’t solve it (there is no solu-

tion), at least you can impress your peers by your detailed knowledge

of mobile click events.

T H E M O B I L E W EB H A N D B O O K18 0

Taking Apart The Touch Events
If you listen to touch or pointer events, you want to know more about

them. Specifically, you want to know the target or the coordinates of

the touch event. That means digging into the event object, just like

with any other JavaScript event.

var	el	=	[an	element];

el.addEventListener('touchstart',handleTouch,false);

function handleTouch(e) {

 // e refers to the event object

 // e.type gives the event type

 // e.target gives the event target

 // return false or e.preventDefault() prevents

 // the default action

}

Type, target, and preventing the default action work like with any

other event. There is more to say about preventing the default action,

and we’ll get back to it later, but you need a standard return false

or e.preventDefault() to begin with.

touchLists
There’s one special feature that touch events have that is lacking in

pointer events: touch event objects contain references to touchList

arrays that hold objects for every individual touch. If the user is cur-

rently using four fingers you will find four entries in a touchList.

There are three touchLists.

TO U C H A N D P O I N T ER E V EN TS 181

1. touches: a list of currently active

touches on the entire screen

2. changedTouches: a list of touches

whose change led to the firing of the

touch event.

3. targetTouches: a list of touches

that started on the event’s target.

The trick is to use changedTouches,

and the reason for that is the touchend

event. If the user lifts their last finger

from the screen and causes a touchend

event, the touch doesn’t exist anymore

and doesn’t appear in the touches or

targetTouches lists. But since it was

the removal of this touch that caused

the touchend event to fire, changed-

Touches still contains information

about the removed touch. That’s vital if

you want to know where a drag-and-drop

action ended.

These touchLists work as arrays in that

they have indexed entries, and every entry

is an object that contains interesting

information about one touch, notably the

coordinates.

On older screens, and with zoom 100%, one

CSS pixel equals exactly one device pixel.

The changedTouches list contains only

the touch that caused the event: the mov-

ing finger.

The targetTouches list contains only the

two touches that are on the element.

A user has four fingers on the screen, of

which two are on the same element. She

moves one finger, and a touchmove event

fires. Which touches are included in the

three touch lists?

T H E M O B I L E W EB H A N D B O O K18 2

Finding the Event Coordinates
This is how you find a touch event’s coordinates:

function handleTouch(e) {

 // use pageX/Y instead of clientX/Y if necessary

	 var	touch	=	e.changedTouches[0];

	 var	coorX	=	touch.clientX;

	 var	coorY	=	touch.clientY;

}

The first object in the changedTouches list is the touch that caused the

event that just fired. (Usually, the touchList doesn’t contain any other

objects.) This object contains coordinate information stored in clientX/Y

and pageX/Y. Other coordinate properties, notably screenX/Y and

x/y, have serious browser issues and should not be used.

However, we don’t have a true cross-browser script yet. First, IE doesn’t

support touchLists and gives coordinates the old-fashioned way on

the event object itself. Second, in cases such as drag-and-drop scripts it

would be useful if we had one function that finds coordinates for both

mouse and touch. So the 100% safe cross-browser compatible function

for finding event coordinates is:

The difference between clientX/Y and pageX/Y is that the first pair is

calculated relative to the top-left corner of the visual viewport, but the

second relative to the top-left corner of the layout viewport, which may

have scrolled out of view. Which one you should use depends on which

coordinate set makes most sense for your script.

TO U C H A N D P O I N T ER E V EN TS 18 3

function	findCoordinates(e)	{

 // use pageX/Y instead of clientX/Y if necessary

	 var	x,y;

 if (e.changedTouches) { // touch events

	 	 x	=	e.changedTouches[0].clientX;

	 	 y	=	e.changedTouches[0].clientY;

 } else { // pointer or mouse events

	 	 x	=	e.clientX;

	 	 y	=	e.clientY;

 }

	 return	[x,y];

}

Leaving the Element
Say you bind touchstart, touchmove, and touchend events to a

certain element. If your finger leaves that element, touchmove, and in

some browsers touchend, will continue to fire. That is, as long as the

touch starts on the element, touchmove continues to fire as long as

the touch remains on the screen, even if it leaves the element the event

handler is defined on. The opposite is not true: if you start your touch

elsewhere and then move your finger to the element, touchmove does

not fire.

We now see why touchenter and touchleave events would be

useful. The current touch events don’t give any hint of the touch leav-

ing the element they were defined on, and occasionally that informa-

tion is necessary.

This behavior does not occur with the pointer events. When your fin-

ger leaves the element, pointermove stops firing.

T H E M O B I L E W EB H A N D B O O K18 4

Preventing the Default
Any event handler allows you to cancel the default action of the event

by returning false or calling event.preventDefault(). Do-

ing this onclick makes sure the link is not followed, onsubmit it

cancels the sending of the form, and so on. This is ancient and reliable

functionality. It also works for the touch events, but not for the pointer

events.

First, a note: some devices do not allow the default of some gestures

to be canceled. For instance, the iPad will never cancel the default of

a four-finger swipe, since it switches from one app to another and is

considered a fundamental OS-level interaction. Scripts are not allowed

to touch it.

If you prevent the default ontouchstart, the browser concludes that

you do not want the default action associated with your finger move-

ment to take place. Thus, a link is not followed, a swipe does not result

in a scroll, and a double-tap does not zoom in or out. Also, preventing

the default of a touch event prevents the cascade of mouse and click

events.

The only slightly tricky bit is distinguishing between touchstart

and touchmove. It turns out the browsers handle this quite sensibly:

if the default action requires both touchstart and touchmove, such

as scroll, a return false on either will cancel the scroll. If the default

action only requires a touchstart, such as a tap or double-tap, you

must return false ontouchstart. Touchmove will not help you

here.

TO U C H A N D P O I N T ER E V EN TS 18 5

1. touchstart only: tap (click), double-tap, touchhold, and the

event cascade.

2. touchstart or touchmove: scroll or pinch-zoom (though

Android WebKit 2 doesn’t allow you to cancel a pinch-zoom at all).

The pointer events, and therefore IE, don’t support preventDefault()

at all. It is not possible to prevent the default action in JavaScript —

instead you have to use the CSS touch-action declaration that we’ll

examine later. This is actually a feature, and not a bug. The IE team

wanted to make sure that any direct manipulation of an element (that

is, performing any touch action on it) would have immediate, visible

results. If you allow preventDefault(), it might take too long for

the instruction to reach the browser due to the script being slow. That

might cause a visible stutter: initially the element reacts to the touch

action, but after half a second or so it doesn’t anymore because the de-

fault is canceled. This is the main reason pointer events moved default

canceling from JavaScript to CSS.

Example: Horizontal and Vertical Scrolling
The scroll script contains an example of default canceling. I decided

that a horizontal scroll swipe should cause the element to scroll, while

a vertical one should cause a regular page scroll. How do I make sure

that happens? By canceling the default for horizontal scrolling, but not

for vertical scrolling.

T H E M O B I L E W EB H A N D B O O K18 6

This is what I do. If the movement is mostly vertical (y is larger than x),

I want the page to scroll normally, so I must return true in order to

hand the event over to the OS. If the touchmove is mostly horizontal (x

is larger than y), the script should move the scrolling element and the OS

should do nothing; I return false to cancel the default scroll action.

document.ontouchmove = function (e) {

 // origin[] has the coordinates of the touchstart

	 var	currentPos	=	findCoordinates(e);

	 var	newPosX	=	(currentPos[0]	-	origin[0]);

	 var	newPosY	=	(currentPos[1]	-	origin[1]);

 if (Math.abs(newPosY) > Math.abs(newPosX)) {

	 	 returnValue	=	true;

 } else {

	 	 returnValue	=	false;

 // pos is the element’s X-coor when the

 // scrolling started

	 	 newPosX	+=	pos;

 // min and max are the pre-calculated

 // minimum and maximum scroll

 if (newPosX <= max && newPosX >= min) {

	 	 	 layer.style.left	=	newPosX	+	'px';

 }

 }

	 return	returnValue;

}

TO U C H A N D P O I N T ER E V EN TS 187

Pointer Events
It’s time to focus on pointer events. They don’t differ that much from

touch events, but there are several slight incompatibilities that you

need to know about. Also, you must know about the touch-action

CSS declaration.

IE11 supports the pointer events detailed in the table below. The event

names deliberately resemble the mouse event names: the pointer

events are exactly the same, except that they work with any kind of

pointer, not just a mouse.

Touch and pointer events differ in the following ways:

1. At the time of writing, pointer events are only supported by IE.

Although Chrome and Firefox are considering implementation,

they don’t ship pointer events yet.

2. Pointer events need the MS vendor prefix and sometimes

camelCase event names in IE10. See below.

3. Pointer events don’t have touchLists; so event coordinates are

found in the event object itself, just as with mouse events. We

already discussed this problem and its solution.

4. It’s not possible to cancel the default action of pointer events in

JavaScript for reasons we’ve already discussed.

T H E M O B I L E W EB H A N D B O O K18 8

Event Meaning Bubbles Support

pointerdown
The mouse button is depressed or the

user’s finger or pen touches the screen.
Yes IE10

pointermove
The pointer moves on the element the

event is defined on. If the pointer leaves
that element the event stops firing.

Yes IE10

pointerup
The mouse button is released, or the

user’s finger or pen leaves the screen.
Yes IE10

pointerover
The pointer enters the element the

event is defined on or one of its
children.

Yes IE10

pointerout
The pointer leaves the element the

event is defined on or one of its
children.

Yes IE10

pointerenter
The pointer enters the element the

event is defined on.
No IE11

pointerleave
The pointer leaves the element the

event is defined on.
No IE11

Pointer Events

The difference between pointerenter/leave and pointerover/out

is the same as between mouseenter/leave and mouseover/out. The

over/out events fire when the pointer goes into or out of the element

the event is defined on, or any of its children. The enter/leave events

only pay attention to the element itself, and not to its children. General-

ly speaking, enter/leave are the events you want.

TO U C H A N D P O I N T ER E V EN TS 18 9

Names and Prefixes
In IE10 the pointer events are prefixed and sometimes camelCased.

IE11 supports this as well, but also unprefixed lowercase event names.

Microsoft warns that eventually the IE10-compatible names will be

dropped. Thus, a future-friendly script that must also support IE10

requires you to use both systems. The following event names are the

only ones that work:

el.onmspointermove	=	doSomething;	

	 //	lowercase;	IE10	and	IE11

el.onpointermove	=	doSomething;	

	 //	lowercase;	IE11	only

el.addEventListener('MSPointerMove',doSomething,false);	

	 //	camelCase;	IE10	and	IE11

el.addEventListener('pointermove',doSomething,false);	

	 //	lowercase;	IE11	only

If you decide to drop IE10 you can use the IE11-specific ones only:

they’ll continue to work forever. If you must support IE10 you have to

combine the event names somehow.

Also, the event type changed from IE10 to IE11. Where in IE10 it was

MSPointermove, in IE11 it has become pointermove. This is some-

times annoying, since if you want to do something when a certain type

of event is received, you should write:

T H E M O B I L E W EB H A N D B O O K1 9 0

function doSomething(e) {

 if (e.type === 'MSPointerMove'

 || e.type === 'pointermove') {

 // this is a pointermove event

 }

}

Again, if you drop IE10 you can just check for pointermove and be

done.

Event Properties
Pointer events have the usual event properties such as target and

Property Value Meaning

pointerType
mouse,

touch, pen
What type of pointer is being used

isPrimary true or false
Whether the current pointer is the primary pointer. In

practice, the mouse pointer and the first touch pointer to
touch the screen are primary pointers; the rest aren’t.

pressure 0.5
How much pressure is being exerted, on a scale of 0–1.

Since the current crop of devices can’t read pressure it’s
always 0.5. That may change in the future, though.

pointerId	 integer
The unique ID for each pointer. The mouse pointer is

always 1, but each touch pointer gets its own ID.

width and

height
1

The size of the pointer, in (probably) CSS pixels. Right
now, devices can’t yet read that out, so both are 1, but

future devices may give the actual width and height of
the fat finger you apply to the screen.

Event Properties

TO U C H A N D P O I N T ER E V EN TS 1 91

clientX/Y — remember that coordinate properties are defined

directly on the event object, and not in a touchList. We’ve already

covered the cross-browser function for finding event coordinates.

Pointer events have a few interesting extra properties, though. point-

erType is one you may want to use right away, while the others are

more like forward-looking properties that don’t make much sense right

now but may become important one day.

touch-action
Finally, there is the touch-action CSS declaration. It tells the

browser which kind of touch actions should be handled by the OS. It is

supported by IE, and Chrome support is expected to land in summer or

autumn 2014.

touch-action allows you to make a distinction between actions

meant for the OS and actions meant for your script. For instance, the

scrolling layer script listens only to horizontal panning, and leaves

vertical panning to the OS. We already saw how to handle that in Java-

Script, but since pointer events don’t support preventDefault()

we must use touch-action: pan-y instead. This tells the browser

to handle vertical pans normally but suppress the defaults of all other

touch actions.

Like with event names, IE10 uses a vendor prefix, while IE11 allows

both a prefixed and an unprefixed version. If you want to support IE10

you must use -ms-touch-action, while the future-friendly version

is touch-action. These properties take the following values, and

note that every value tells the browser which actions are handled by

the OS:

T H E M O B I L E W EB H A N D B O O K1 9 2

You can combine values, so that touch-action: pinch-zoom

pan-y double-tap-zoom makes the OS handle double taps, pinch-

zooms, and vertical swipes, but suppress pan-x. This is in fact the

value we need for the scrolling layer script.

It’s probably not a good idea to use none. Since it suppresses all OS

handling of touch actions, you will be responsible for creating custom

alternatives for scrolling and zooming. You have better things to do.

Only use none if you’re absolutely certain you want to take over the

entire handling of touch actions. In other cases, combine values to

describe exactly what you want the OS to handle.

touch-action: Meaning

none OS does not react to any touch action

auto OS reacts to all touch actions

pan-x OS reacts to horizontal panning

pan-y OS reacts to vertical panning

pinch-zoom OS reacts to pinch-zooming

double-tap-zoom OS reacts to double-tap zooming

manipulation OS reacts to everything except for double-tap

Touch actions

TO U C H A N D P O I N T ER E V EN TS 1 93

The manipulation value is specifically for suppressing the 300

millisecond delay between the touch action and the click event, so it

might be useful to sprinkle that through your code.

We have now explored the CSS and JavaScript features that are unique

to mobile. What remains is some general advice on how to become a

mobile web developer. And that’s exactly what the next chapter of this

book will consider.

Chapter 7

Becoming A
Mobile Web Developer

B ECO M I N G A M O B I L E W EB D E V ELO PER 1 97

Chapter 7

Becoming A
Mobile Web Developer
Whew. We’ve learned a lot about the mobile web throughout this book.

I assume you’ve started to get a feel for viewports and touch events,

:hover and browsers. It’s time to wrap things up with a quick over-

view of what it takes to become a mobile web developer.

What exactly is a mobile web developer? By now most web developers

will have looked at their sites on their own mobile phone, and even

solved an iOS or Android bug or two, but that’s not enough. To me, a

mobile web developer is someone who spends a lot of time on mobile

browsers, and for whom Android WebKit compatibility is as important

as IE compatibility.

The most important advice I can give you is to start doing mobile test-

ing right now. You probably have your own iPhone or Android device:

use it to look at your current project. Now. Also, download Opera Mini

and test in that browser, too. If you have an Android device, download

a few more browsers and test in them, too. I advise Chrome, Firefox,

T H E M O B I L E W EB H A N D B O O K1 9 8

and UC. All of them are available in Google Play — though, as we saw

in the Browsers chapter, they don’t exist for any of the other platforms.

(Remember: Chrome on iOS actually uses the Apple WebView, and not

Blink.) True, your single device is not representative of the market as a

whole, but any mobile test is better than no mobile test. Besides, even

one single browser on one device allows you to get acquainted with the

small screen and responsive web design.

The Ideal Device Lab
Your first job will be to create a device test lab. Here’s the ideal lab as of

summer 2014:

1. At least half your device lab will be Androids. We’ll get back to

them below.

2. iOS: at least one iPhone and one iPad; possibly also an older

iPhone (with less capable hardware) or an iPad Mini (with a

smaller screen). It’s useful to have one device on an older version

of iOS; a few users won’t upgrade, either because they don’t want

to or because their device is too old. In fact, it’s useful to have an

old device yourself, so that you’re sure your site will also run in

adverse conditions. Also, make sure you have one Retina device for

those resolution and responsive images tests.

3. BlackBerry: especially in the UK, where BlackBerry still has a

browser market share between 5 and 10%, it’s important to have

one or more of them for testing purposes. I’d say one BB10 device

(Z10 or Q10 or even newer), and an older one with OS6 or 7. If you

can get your hands on a non-touchscreen one that would also be

useful.

B ECO M I N G A M O B I L E W EB D E V ELO PER 1 9 9

4. Nokia is complicated because it currently supports three different

platforms with varying levels of global market share. What you

will need in any case is a Windows Phone, preferably a new one.

Windows Phone has a fairly low market share but it’s slowly rising

and you do want to test in IE Mobile. If you have enough money,

buy a Windows Phone 8 (with IE10 Mobile) and a Windows Phone

8.1 (with IE11 Mobile); increase both by one version number if IE12

Mobile is available by the time you read this.

5. As for the other Nokia platforms, that depends on whether you

will do a lot of work for Africa, Asia, or Latin America. If you do,

it’s good to have an Asha (S40) with Nokia Xpress handy, since

they are still being used a lot. Symbian is a dying platform. If you

happen to have a Symbian phone or can get one cheaply, add it

to your line-up. If you don’t, don’t bother. (By the way, even at its

zenith Symbian was not important in the US.)

6. Windows 8: at least one Windows 8 tablet: either a Microsoft

Surface or one from the other vendors. Windows 8 tablets are

different from phones, both in support (no meta viewport,

for instance), and in the fact that they support touch, mouse,

and keyboard and you can use the three interaction modes

interchangeably.

7. Then, the minor OSs: Firefox OS, Tizen, Amazon Kindle, and

Sailfish by Jolla. They don’t have market share to speak of at the

time of writing, but that could change. Keep an eye on them and

add them to your lab when necessary — and if you can get one

on the cheap, do it. (At the time of writing Firefox OS phones are

especially inexpensive.)

T H E M O B I L E W EB H A N D B O O K20 0

Updates
Be careful with browser or OS updates, since they can disturb your test

setup. I never update anything while going through a test, but since I

run compatibility tests and you will likely run website tests, your mile-

age may vary. Set a rule at the start: either update everything straight

away, or postpone all updates until your current test run is finished.

As we saw in the Android chapter, Android has a complicated update

timetable. The other OSs are usually less hassle. iOS users, in particular,

tend to update their devices quickly, although a small minority will not

be able to update due to their device being too old.

I alternate updates between my iPhone and iPad. At first my iPhone

ran iOS5 and my iPad iOS6, and when iOS7 was released I updated my

iPad, but not my iPhone. When iOS8 is released (a few months after

writing this) I’ll update my iPhone, but not my iPad. Thus I always have

the latest two versions available. You should establish a similar rule for

your iOS devices.

As for downloadable browsers, they will update far more frequently

than device OSs. Install every update, just as you would on desktop.

Android
As we saw in the Android chapter, the main characteristic of Android

is its differentiation. Whenever you buy an Android device, make sure

it comes from a different vendor and has a different screen size and

Android version than the devices you already own. You could make an

exception for the Samsung Galaxy range, or any other model that has a

very high market share at the time you read this.

B ECO M I N G A M O B I L E W EB D E V ELO PER 201

Once you’ve bought the device, test the default browser carefully to

establish its identity and make a note of it. Remember: any browser

that has Chrome in its user-agent string (navigator.userAgent)

is Chrome, though not necessarily Google’s Chrome, while any default

browser that hasn’t is Android WebKit.

I advise you to read through the long browser list in the Android

chapter again, since one of your purposes is to have at least one of each

default browser available, and two or three Android WebKit 4s.

So a good Android lab consists of the latest high-end Samsung Galaxy,

maybe an earlier high-end Galaxy, an HTC, a Sony, and an LG. Grab a

Chinese Android (preferably a Lenovo, Huawei, or Xiaomi) if they are

available in your market, and add Motorola to the list if you’re in the

US. Make sure at least one of these devices is a mid-range one (say

€100–150), and at least one runs Android 2.

Owning a Google device is not a top priority. Despite their popularity

among web developers, normal consumers don’t buy all that many of

them, and the Google Chrome that runs on these devices is not repre-

sentative of Android default browsers of other vendors. I advise you to

postpone buying a Nexus until you have 3 or 4 non-Google devices.

Once you have these devices, install the other browsers on them:

Chrome, Firefox, Opera Mobile, Opera Mini, and UC are the important

ones, but as long as you’re at it you should add UC Mini (proxy brows-

er; very popular in China), QQ (also called One; Chinese), Puffin (Korea),

and anything else you can lay your hands on. The purpose is not so

much making sure your site runs perfectly (though that is a definite

T H E M O B I L E W EB H A N D B O O K20 2

bonus), but getting acquainted with the odd things mobile browsers

may do to your site. And all these browsers are free.

Spread out these browsers across your Android devices — don’t install

them all on one device. Once you get to the actual testing you want to

be able to use several devices side by side.

No Experimental Versions
Even though you are a power user, your job is to create websites that

work for the average consumer. Be careful to test only on OS versions

and in browsers that consumers actually use. It’s nice to know that

feature X is supported in version Y, which is in beta, but consumers

don’t use betas so you can’t yet use feature X, despite it working on

your device.

I advise you to only test in the latest and next-to-latest consumer ver-

sions of the browsers or OSs, and not in beta ones. This will serve your

clients better and also keeps your tests simpler.

In particular, do not install custom versions of Android on your phones

(called flashing the ROM). Consumers don’t do that, so your device will

be useless for testing. Keep the OS and browser exactly as they were

when you bought the devices, and only install official updates. These

are test devices, not personal ones.

Acquiring Devices
Knowing what an ideal device lab should contain is good, but how do

you go about actually acquiring the devices? Although larger compa-

nies will be able to allocate a few thousand euros or dollars per year for

devices, freelancers are usually not in that position.

B ECO M I N G A M O B I L E W EB D E V ELO PER 20 3

The solution is simple: acquire them slowly. Save at least €100 per

month to buy devices. This will allow you to buy two high-end or five

mid-range devices per year. That’s not really a lot, but it’s better than

nothing. The more you save per month, the better, obviously. Take

a look on eBay and similar sites — sometimes you’ll find nice sec-

ond-hand deals there. A few scratches won’t impede your testing.

You already have an iPhone or Android for your personal use. The first

test device you acquire should be an Android if you have an iPhone,

or an iPhone if you have an Android. The second should be another

Android — buy one from a different vendor with a different screen size,

a different default browser, and a different Android version. After that

should probably come one or two more Androids, an iPad, and a device

that’s neither iPhone nor Android.

Occasionally, freelancers feel that acquiring devices will cost them a

lot of money. Although that is correct in a literal sense, serious mobile

testing requires a serious test lab. Just as you buy a few computers and

a few software packages if you need them, you should buy devices as

well. They represent a business expense that you hope to earn back

(with interest) from your clients, since you can do a better job with

them than without them.

Sharing Devices
Still, if you’re a freelancer who can afford two devices per year, you’ll

initially have a lab of only three or four devices: two professional ones,

your personal one and maybe your personal tablet. That’s enough for

a few simple design tests, but not enough if you want to use complex

JavaScript and have to make sure the performance is acceptable every-

where.

T H E M O B I L E W EB H A N D B O O K20 4

Fortunately, you’re very likely not the only one in your area with this

problem. If you find other developers who are building a lab of their

own, invite them to compare notes and swap devices. Not only will

you be able to test your websites on more devices, you will also acquire

useful contacts to discuss technical issues and the mobile market in

general, and perhaps serve their surplus clients.

All over the world, open device labs are

becoming popular. Usually founded and

supported by a small local company with

a decent set of devices, these labs are

open to anyone who wants to test mobile

devices, provided they reserve a slot in ad-

vance. In return, you can leave your devices there if you don’t need them

for a while. Finding out whether your city has one is worth the trouble. If

it doesn’t, maybe you should set one up? If nothing else it could net you

some valuable contacts.

What To Test
OK, so you have the perfect device lab. Now, what will you test? Ob-

viously, you start with basic website behavior, just as on desktop. Do

the CSS and JavaScript work? If not, how do you solve the problem?

Do your responsive design breakpoints need adjustment? Maybe the

two-column layout should kick in at a slightly larger viewport width?

You can figure this out for yourself.

There are a few things that are different from desktop, though, so a

really thorough mobile testing procedure includes the following:

On http://opendevicelab.com/ you can

find many open device labs around the

world — maybe even one in your city.

B ECO M I N G A M O B I L E W EB D E V ELO PER 20 5

1. In addition to Wi-Fi, test your site over a data network — ideally

3G or better, but also on 2G if many people in your target

region can’t get anything else. If you’re really thorough, you

test on several networks. A real network connection can lead to

unexpected situations such as a blazing fast connection directly

followed by no connection at all. (If you’re really thorough, test in

a moving train where circumstances change all the time.) What

happens when the connection suddenly fails?

2. Test in both portrait and landscape orientation. As we saw in

the Viewports chapter, the ideal viewport will change with the

orientation in most browsers. That’s not all, though. How do fixed

layers behave? Maybe there are problems with repositioning or

recalculating a specific element, especially modal windows and

complex items such as image carousels. Open a modal window or

use a carousel, switch orientation, and see how it behaves.

3. Test your interactions, especially when they involve custom

gestures. Do all gestures work properly on all devices?

4. Form elements merit special attention, since usually they’re

linked to critical transactions such as paying for something. They

have to work flawlessly in all browsers, both orientations, and

when the user zooms in. Make sure to actually fill out the form

and try to guess what the user will do once the software keyboard

appears. Pay special attention to heavily styled form elements

or components such as calendar widgets. Do they work in all

browsers and orientations?

T H E M O B I L E W EB H A N D B O O K20 6

How To Test
You’ll quickly find that testing your sites on mobile devices is much

more time-consuming than on desktop, and not only because there

are more mobile browsers. Below is some advice for mobile browser

testing based on my own experience. Please don’t get too hung up on

the details; it’s perfectly fine if you structure your testing differently.

Novice mobile testers will find some useful hints here, though.

Time
Testing something on mobile devices takes more time than you think,

even if you start out by assuming it’ll take more time than you think.

There is no such thing as a quick mobile test. Allow them to go way

over time if necessary. Do not start a quick test 15 minutes before

you’re supposed to go home. You won’t go home on time.

Preparing the Devices
There are certain preparations

you have to make before starting

the actual tests. The most import-

ant one is some sort of syncing

solution. You want to be able to

click through your site on your desktop computer, with the phones fol-

lowing along. This greatly cuts down testing time, since you don’t have

to perform every click on every phone. At the time of writing there are

two major tools for syncing:

• Ghostlab, which requires you to add a script to your page. See

http://smashed.by/mwhb16 for more information. Don’t forget to

remove the script once your tests are complete.

For an overview of mobile testing see

http://smashed.by/mwhb15, where

Addy Osmani talks about several tools.

B ECO M I N G A M O B I L E W EB D E V ELO PER 207

• Adobe Edge Inspect syncs iOS and Android devices to your desktop

Chrome. You can find more information at http://smashed.by/mwhb15

On every device, set the screen timeout to its maximum value. This

timeout is for switching off the screen after a period of inactivity, and

switching the phone on before reloading your page becomes annoying

after a while. The timeout can generally be found in the display set-

tings of the device.

Add an icon to the home screen for every browser. You’ll usually do this,

but forgetting it even once can lead to problems down the line. If you

can change the icon text, note the browser version.

Make sure all devices are charged. This sounds like a no-brainer, but

I found that the only way to actually make sure is to be pretty disci-

plined about it. Plug in all phones in the next batch before starting on

your current batch (see below for batches): this ensures that the phones

are ready when you are. Another no-brainer: make sure you have mul-

tiple power sockets available. You don’t want to charge just one phone,

but up to eight or so.

Nowadays, nearly every device has Wi-Fi capability. Nonetheless, a few

devices (notably Windows Phones) can be fairly slow in setting up a

connection even to a known access point. Make sure to switch these

phones on a minute or so before the actual testing starts. In case you

test on non-Wi-Fi phones, make sure to insert a SIM card and start

them up a few minutes before you need them.

T H E M O B I L E W EB H A N D B O O K20 8

Testing in Batches
Once you get beyond five or six browsers to test in, it becomes useful

to divide them up into batches and test one batch at a time. Count ev-

ery instance of Android WebKit as a separate browser, as well as every

version of any browser. The purpose of batch testing is not to be over-

whelmed by bugs and oddities, but to solve them one or two at a time.

Make an ordered list of devices and browsers you want to test. I en-

courage you to write down this list, including device names and exact

version numbers of OSs and browsers. This will become an invalu-

able reference in the later stages of testing, when your enthusiasm is

flagging and your true interest lies in throwing mobile devices around

the room. By then you won’t be able to remember what you should test

next, and looking at your list will save you a lot of headaches.

Once you have that list, divide it into batches. The first batch should

be a mixed one, while the rest should have a common theme (Android,

Opera, and so on). The purpose of the mixed batch is to get a quick

overview of whether your code is going to work across different brows-

ers or not. If you find a lot of problems in the first batch, you should

probably choose another approach. If you don’t find many problems

you’re on the right track and you can continue with detailed tests in the

other batches.

Each batch should contain between three to eight browsers. Make

sure that in every batch each browser runs on its own device. You do

not want to switch to different browsers on the same device since that

takes way too much time and will become confusing after a while.

B ECO M I N G A M O B I L E W EB D E V ELO PER 20 9

When you initially create a page you should test constantly in the

mixed batch of about four to five browsers. This batch should contain

one Safari, one Android WebKit (not Chrome!), one Opera Mini, one

browser that’s neither iOS nor Android, and maybe one or two other

browsers that are important for your client’s target audience.

Once your page works in this first batch, the time comes to test it in all

browsers on your list, batch by batch. The problem here is that if you

notice a problem and change the page, you have to go back to the be-

ginning and test the new version in all previous batches. Therefore, it’s

best to start with the most problematic browsers that will likely need

many adjustments: Android WebKit, IE, and the proxy browsers.

So a possible batch list could look like this; adjust to taste and device lab:

1. The mixed batch of one Safari, one Samsung Android WebKit 4

(not Chrome!), one Windows Phone, one Opera Mini, and one

Chrome.

2. A batch of Android WebKits: all Android devices you have

available. If you have more than one Android 2 device, do Android

2 first, then Android 4. Make sure these are all Android WebKits,

and not Chromes.

3. A batch of IEs and proxy browsers: say IE10, IE11, Opera Mini on

two or three devices, Nokia Xpress, UC Mini. By the time you

finish this batch you’ll have found many problems and will likely

have started again a few times with the Android WebKit batch.

T H E M O B I L E W EB H A N D B O O K210

4. If you have them, a batch of unusual browsers like UC, QQ One,

Tizen, Puffin, and game consoles. You may want to ignore a few

bugs for these rare birds. Don’t tell anyone.

5. Finally, the easy browsers: Safari on all iOS devices you own,

BlackBerry WebKit, Chrome, Firefox, and Opera Mobile. These

browsers usually behave decently and shouldn’t cause too many

problems, which is why they should go last.

Don’t get too hung up on these exact batches, but I hope you under-

stand the principles. Take a few hours to design the batch list; this

overhead time will pay itself back many times over when you’re in the

thick of mobile testing.

Testing Process
Once you get to the actual testing, the following tips and tricks will

help you:

1. Use simple URLs. You don’t want to type in

192.168.17.49:8080/testsite/default/Default.

aspx twenty times on software keyboards. I use quirksmode.

org/m as a standard page and add links to whatever I want to test.

2. Make sure you’re testing in the right browser. This sounds a bit

silly, but if you have three or four browsers on one device, you

may accidentally start up the wrong one and think you’re testing

in Opera Mobile while you actually have Android WebKit open.

This has happened to me several times.

B ECO M I N G A M O B I L E W EB D E V ELO PER 211

3. Be very finicky and precise with testing gesture-based

interactions. Make sure that in each browser your gesture is

exactly the same. If it’s not, you might find differences due not to

the browsers but to slight differences in your gestures. In general,

it’s best to predefine gestures, and make sure their start and

end points are visible on the page; for instance, “swipe from the

bottom-left corner of element X to the top of the screen.”

4. When you’re testing responsive designs it may be useful to see

the viewport width and height onscreen. Print out document.

documentElement.clientWidth/Height. Make sure to do

it again onresize and onorientationchange; these events

usually fire when the viewport dimensions change.

Overcoming Outdated Reflexes
There are some reflexes from traditional desktop web development

that we have to let go of. The most important ones are our distrust of

browser detection and our overuse of JavaScript libraries.

Browser Detection
Traditionally, browser detection is a no-go for web developers.

If you distinguish between IE and Chrome through their

navigator.userAgent strings you can expect some pointed ques-

tions. Instead, we’ve learned you should detect the feature you want to

use, and make decisions based on the result of that check.

I have been preaching feature detection since 1998 and played my part

in convincing web developers of the perils of browser detection, so it

took me a while to acknowledge that the situation on mobile is some-

T H E M O B I L E W EB H A N D B O O K21 2

times different. As soon as I started talking to people with years of

experience in mobile, they all told me that some sort of browser detec-

tion is a necessary evil. The more experienced a mobile web developer

is, the more they rely on server-side browser detection because feature

detection doesn’t help in certain cases. Consider:

1. Suppose you need “Back” functionality on your website. Certain

OSs, such as Android and BlackBerry, have a native “Back” button,

and inserting your own button would only confuse users — or,

worse, confuse the OS’s “Back” functionality.

2. Some Android devices claim to support input type="date"

and such, but don’t actually have the native components to fill

in a date. BlackBerry 6’s default browser supports touch events

and tells you so — even if it is running on a device without a

touchscreen.

3. A browser might support animations and transitions but have a

poor GPU (or none at all) so that everything slows to a crawl, and

the user would be better off without them.

In all these cases, the problem is not with the browser’s support for CSS

and JavaScript but with physical device characteristics or specific OS

functionalities. Detecting the presence of a “Back” button is impossible,

and in the other examples the feature detection would return a false

positive, since the browser only indicates it supports the feature, but

not how bad that support is.

If you encounter use cases like this, it might be time to start detecting

browsers. This is something you need a bit of experience with. The

B ECO M I N G A M O B I L E W EB D E V ELO PER 21 3

point here is not that you should use browser detection for everything,

but that there are certain device features that are undetectable in any

other way. I’m not saying you should ditch feature detection, but you

may encounter situations where browser detection is a necessary addi-

tion to your regular feature detection.

If you decide you need a browser or device detection script, don’t write

your own. Knowledgeable people have already done the work for you.

There’s a whole ecosystem of device detection services, of which WURFL

 (smashed.by/wurfl) and DeviceAtlas (smashed.by/atlas) are the best

known. Hand it the UA string of a mobile browser, and it will tell you

something about the browser’s and the device’s capabilities. If you’re

looking for a pure browser detect, without device information, try

WhichBrowser (http://whichbrowser.net/).

JavaScript Libraries
The second outdated reflex is to use a JavaScript library for absolutely

everything. This is the sad result of the overreliance on libraries that

we developed in the 2006–2011 era, to the extent that some web devel-

opers can’t even write JavaScript anymore.

I’ve always had reservations about JavaScript libraries, and they were

reinforced by a research paper from April 2012 (http://smashed.by/wwwcon).

The researchers measured the battery use of an Android phone while

loading several websites, including Wikipedia, and experimented with

redesigning one function of that website. Wikipedia’s accordion script,

which uses jQuery, was replaced by a custom-made function, and the

measured energy consumption for downloading and rendering the

page fell by one-third.

T H E M O B I L E W EB H A N D B O O K214

The size of the download isn’t even the issue: library vendors are well

aware of that problem and have taken steps to make their files as light

as possible. The problem is that the entire library has to be executed,

draining the battery as feature after feature is initialized — and your

page might not even use most of the features.

The solution to this problem is not to relegate JavaScript libraries to the

ash-heap of history, but to ask yourself whether you really need one. If

you’re building a complex interface with lots of functionalities, the an-

swer will likely remain yes. If you just need one basic effect such as a

show/hide toggle or simple form validation, it’s time to write the entire

script by hand. Not only will that sharpen your JavaScript skills, but it

will also make your site perform better. Don’t worry about browsers: all

of them support simple effects well; it’s only when you need complex

ones that they start to behave erratically and a library becomes a useful

addition to your site.

The Mobile Network
Mobile networks were set up to

accommodate devices that have to be

reachable only on occasion — when

a device makes or receives a call, and

when it sends or receives an SMS.

Setting up a mobile connection takes some time, and if the mobile

connection remains idle for a while, it is closed down in order to save

battery life.

This principle also goes for data connections: when the browser re-

quests assets, it takes roughly two seconds to set up a mobile connec-

tion, which then closes down after five to twelve seconds of inactivity.

Steve Souders did the funda-

mental research on mobile con-

nections. Read his conclusions at

http://smashed.by/mwhb18a

B ECO M I N G A M O B I L E W EB D E V ELO PER 21 5

Two seconds might not sound like much, but compounded with the

normal latency of a mobile network and web server, it makes for an

annoying wait.

Again, there’s little you can do about this, except for one thing: if the

user needs data anyway, take the opportunity to load as much as you

can. This sometimes means making an educated guess as to what data

the user is going to need next, and you may occasionally guess wrong,

but that’s still better than reopening a mobile connection every time

the user needs a tiny bit of data. You could decide to store some data, or

even things like web fonts, in the browser’s localStorage.

Connection Speed
The most serious problem you can encounter on mobile is a slow con-

nection. While desktop connections are generally reliable in the sense

that they don’t change a lot, mobile connections may vary immensely

if a user is on the move. Besides, it’s almost impossible to find out any-

thing that’s not instantly obsolete about your users’ connection speeds.

It’s essentially an impossible problem to solve.

Instinctively, web developers assume that a 3G or even a 4G connec-

tion is slower than a Wi-Fi connection. This may be true most of the

time, but not always. Sometimes a user is in a public space with Wi-Fi,

but it’s slow or unreliable Wi-Fi used by many people simultaneously.

It could also be that in one country the 4G network is overused and

slow, while another country has a brand-new 4G network that doesn’t

yet have all that many users — and thus blindingly fast connections.

In such cases, the user’s mobile connection might actually be faster. Do

not fall into the trap of assuming that a user on 3G has a slow connec-

T H E M O B I L E W EB H A N D B O O K216

tion speed, or that a user on Wi-Fi has a fast one. Connection type is

not a proxy for connection speed.

Although measuring connection speed is in fact not all that hard, the

problem is that the result is worthless. The connection speed may

be decent at the moment you measure it, but what if the user is on

the move and goes from cell tower to cell tower — or from Wi-Fi to a

mobile connection? Or maybe reception is perfect right now, but the

user’s train is about to enter a connectionless tunnel. Or the user may

reach their roaming limit and the connection may suddenly disappear.

Although you can detect all that, you can’t define a general download

policy in such a changing environment, so I advise you not to try.

We’re nearing the end. You now have a lot of knowledge that will help

you become a consummate mobile web professional. There’s just one

thing lacking: a quick look at the future of the web on mobile.

Chapter 8

The Future Of
The Web On Mobile

T H E F U T U R E O F T H E W EB O N M O B I L E 21 9

Chapter 8

The Future Of
The Web On Mobile
We’ve learned a lot, but what’s still lacking is a sense of where we’re

headed. It’s clear that web development has changed and will continue

to change, due in large part to the advent of the mobile web, mobile

browsers, and likely also native apps. So what’s next for the web on

mobile?

First things first. Traditional websites, in the sense of a user opening

a browser, following a link, and loading and using the site, are not

going to go away. Although from time to time you’ll hear stories of how

people are using apps much more than they use websites — and there’s

likely a kernel of truth in them — smartphone users expect to be able

to just visit a website. It is unthinkable that they lose that ability. Thus,

mobile browsers will continue to exist, and web developers will contin-

ue to be expected to make websites that work well on mobile devices.

T H E M O B I L E W EB H A N D B O O K2 20

HTML5 vs. Native
Back in 2010, the HTML5 vs. native debate was all the rage. People start-

ed to understand that for certain classes of mobile apps, HTML5 and

native were competitors. When should we use one, when the other? Or

would one of them win out over the other?

After a while it became clear that HTML5 and native both have their

strengths and weaknesses: native apps offer a superior user experi-

ence; while HTML5 apps offer superior adaptability. A victory of one

over the other is unlikely, because different use cases require different

technologies.

There is no doubt that, as an environment for creating compelling apps,

HTML5 is less capable than native. As a result, new features are being

proposed that should bring the web more in line with certain aspects of

native apps. We’ll review a few of them below.

However, even if HTML5 would support all the features of current

native apps, it still wouldn’t have caught up. Native environments keep

evolving as well, and they go faster than the web because they don’t

have to worry about anything but their own platform. The addition of

a feature to iOS is completely independent of what Android is doing or

not doing — the two environments simply do not intersect. Conversely,

if a new HTML5 feature is proposed it will have consequences in many

dozens of browsers, and will have to be discussed thoroughly. That

makes the web slower to evolve than native.

As far as I’m concerned, catching up with native across the board is not

the point of web technologies. I feel we should concentrate on those

T H E F U T U R E O F T H E W EB O N M O B I L E 2 21

things that the web does better, or could do better, than native. At the

end of this chapter we’ll encounter a few.

Emulating Native
Although the web will never catch up with native, emulating individual

native features can be an excellent idea. A not inconsiderable amount

of thinking and engineering is being spent on it. Which native features

does it make sense to emulate? The list below is not complete, but it

gives you some idea of what we’re looking for.

Connectivity and AppCache
Mobile devices can suddenly lose

their connections, or never acquire a

connection in the first place. That’s

why it makes sense to store the data

or the HTML, CSS, and JavaScript

files on the device itself, so that fu-

ture uses of the site or app aren’t im-

peded by a lack of connection. Data

storage is adequately covered by

localStorage, but file storage is more

of a problem. Originally, appcache

was supposed to solve that problem,

but it turned out to be so hard to use

that a new Service Workers specifi-

cation was begun instead. We aren’t

there yet, but the storage problem is

in the process of being solved.

According to Jake Archibald, who did

most of the research, appcache is a

douchebag. It’s not completely unus-

able, but it has so many caveats and

edge cases that you have to be very,

very careful when using it. Read the lu-

rid story at http://smashed.by/mwhb19.

The new Service Workers spec attempts

to avoid the appcache mistakes, but

at the time of writing it hasn’t been

implemented in consumer versions of

browsers yet. The specification is at

http://smashed.by/mwhb20.

T H E M O B I L E W EB H A N D B O O K2 2 2

Install on Home Screen
A second problem is installation. In the past five years consumers have

grown used to installing apps on their devices, and seeing the app icon

on their home screen. Mobile

browsers support a similar

mechanism, but the process is

too convoluted.

What we should do is rename

the good old “Bookmark”

feature to “Install.” If a user

installs a site, an icon automat-

ically appears on the device’s

home screen. Tapping the icon

will start up the browser and

go to the URL in the bookmark.

Alternatively, if the website indicates it can be used as an app (for in-

stance, by having a manifest attribute on the <html> tag) it should

be saved to the device and started up when the user taps the icon.

At the time of writing no attempt is being made to actually implement

this, with the partial exception of the Chrome feature mentioned in the

sidebar, but I hope that by the time you read this a real solution is in

the works.

Device APIs
The elephant in the room is device APIs. In order to do something

meaningful with devices you should be able to access the address book,

sensors, location, SMS capabilities, battery charge indicator and so on.

Chrome for Android has an “Add to

Homescreen,” function, but only for

websites that contain a specific meta

tag, and “Bookmark” is still a separate

feature. http://smashed.by/mwhb21

has the details. I hope the meta tag re-

striction will be removed soon and the

mechanism sketched in the main text

will be implemented.

T H E F U T U R E O F T H E W EB O N M O B I L E 2 2 3

This is what device APIs do: they offer a simple JavaScript API to access

these features, and sometimes change their contents, as in the case of

the address book.

Device APIs are a great idea and they are

available but, in general, browser makers

implement the simpler ones, such as

DeviceOrientation, first. Also, in the past

few years many platforms have imple-

mented their own APIs, and standardiza-

tion is slow in coming.

Besides, there are serious security issues.

Nobody wants every random website

they visit to be able to read their ad-

dress book and send it off to a malicious

server. The user has to somehow grant

permission for this sort of device access.

Although that’s technically possible,

presenting this choice in a good user

interface is problematic.

So although it’s clear that the web needs

device APIs to make full use of device

capabilities, it will likely take some more

time before they’re fully supported.

This is the Android model for permissions,

and it doesn’t work. When you install an

app you’re asked to give permission for

anything the app might try to do. Not only

should we have a more granular approach

to permissions, but the timing is wrong

as well: at installation time the user just

wants to get on with it and will accept

anything.

T H E M O B I L E W EB H A N D B O O K2 24

Emulating The Web
So far we’ve discussed native features the web is copying. However,

this sort of influence works both ways. Let’s take a look at web features

that native is, or should be, emulating.

First, URLs. The Applinks service (http://smashed.by/mwhb24) offers

ways to deep-link into native iOS, Android, and Windows Phone apps.

The process is fairly convoluted, but that shouldn’t surprise you. URLs

are a quintessential web feature that have no meaning in native. (OK,

there’s a URL for the App Store or Play page, but that’s not the same.)

It’s hard to get an overview of which device APIs are supported where. I found a

March 2014 article at http://smashed.by/device-apis that gives some details.

It seems that only geolocation, device orientation, media capture, and vibration

are supported in more than one browser.

One solution to this lack of support is the PhoneGap project, which was set up

precisely to combat lack of device APIs, or their fragmentation. You create a web

app using the PhoneGap APIs, submit it to their build system, get back hybrid

apps for most platforms, and submit those to the relevant app stores. The sys-

tem makes sure their APIs hook up with whatever APIs the platform supports.

PhoneGap comes in two flavors: Adobe-owned PhoneGap

(http://smashed.by/mwhb22) and open-source Cordova

(http://smashed.by/mwhb23). Take a look at both if you need device APIs right

now.

T H E F U T U R E O F T H E W EB O N M O B I L E 2 2 5

Still, the people behind Applink think that native apps need this func-

tionality in the long run. It’s too early to tell if they’re right, but the very

fact that native tries to copy this web feature is interesting.

In addition to the universal look-up system implicit in URLs, the

web also affords much more adaptability than native, especially

when it comes to screen sizes. We web developers know that we

can’t predict on what size of screen our site or app will be displayed.

Besides, CSS gives us the tools to solve this problem. Native devel-

opers need a similar solution. Back in 2011, I found an article

(http://smashed.by/mwhb25) that called on Android native developers

to think more like web developers. I’m not sure what came of this but,

again, we see that native developers find they need a few features that

we web developers take for granted.

A second way that the web is more flexible than native is just-in-

time interactions. Scott Jenson wrote a seminal article on this

(http://smashed.by/mwhb26). Essentially, if every shop in a shopping

mall offered you a native app for browsing its current discounts, store

locations, and other features, few people would bother to download

them, since they’ll be used only once for one just-in-time interaction.

Conversely, if these shops offered a simple mobile website with the

same data, people would use them more, since the browser makes it

easy to visit a site once and then forget about it. Quite apart from tech-

nical features, native apps aren’t suited to all situations.

T H E M O B I L E W EB H A N D B O O K2 26

Sharing Apps
It’s clear by now that the web and native influence each other in subtle

ways, and that is not going to stop any time soon. Still, we haven’t yet

found a killer feature that highlights the web’s strengths.

I’d like to propose one, and again it has to do with superior adaptability.

The unique feature of the web is that it works everywhere; that it can

adapt to any environment. Any website or web app will work on any

device with a browser. On the native side that’s unthinkable: an An-

droid app will never work on iOS.

So let’s allow users to share web apps from phone to phone. I have an

Android phone with a nice app; I show it to you and you want it, too,

but you are on Firefox OS. No problem: I open a peer-to-peer connec-

tion (Bluetooth, NFC, whatever), send over the app, and you can use it

straight away.

The really annoying bit is that this is not some pie-in-the-sky utopian

idea, but something I actually did back in 2009, when I worked at Voda-

fone. I created a lot of test apps for the now obsolete W3C Widgets web

app platform, which ran on Symbian. When I got my first Windows

Mobile phone I went through the specifications, saw it supported W3C

Widgets, and decided to test it. So I opened a Bluetooth connection

from Symbian to Windows Mobile, sent over a test widget, opened it

on Windows Mobile, and lo and behold: it worked. An app written for

Symbian ran on Windows Mobile. Ever since I’ve been convinced that

app sharing is the future of the mobile web.

T H E F U T U R E O F T H E W EB O N M O B I L E 2 27

Meanwhile, unfortunately, this idea has gone out of fashion, partly

because there are serious security issues akin to the ones with device

APIs — you don’t want a random app to send off your address book to

an unknown server. Still, I assume that this idea will make a comeback

because the concept is so simple any consumer will understand it, and

because it highlights the unique capabilities of the web that native

apps cannot emulate.

We have come to the end of this book. My hope is that you’ve learned

something about the mobile web, and how it sometimes differs funda-

mentally from the desktop web.

Still, don’t take everything this book says as the gospel truth. You

should see it not as the end of your journey into the fascinating, and

also confusing, mobile world, but as a travel guide for your first steps.

I’m certain that mobile, and new devices in general, are going to

change the web beyond our wildest dreams.

So let’s move on. It’s going to be quite a journey.

:active
:hover
@viewport
300ms

A
acquiring devices
anatomy of a click
Android
Android browsers
Android WebKit
AppCache
aspect-ratio

B
background-attachment
BlackBerry
Blink
browser compatibility
browser detection
browsers
browsing market share

C
canceling the cascade
Chrome
Chromium
click event
commoditization
connection speed
consumer mindshare
CSS animations
CSS declarations
CSS pixels
CSS transitions

D
default browsers
developer mindshare
Device APIs
device lab
device orientation
Device Pixel Ratio (DPR)
device pixels
device-aspect-ratio
device-height
device-pixel-ratio
device-width
differentiation
downloadable browsers
dpi
dppx
drag and drop
drop-down menu

E
em media queries
event equivalents
event properties

F
featurephone
Firefox OS

G
gesture events
global device market
Google Services

H
HTML5 vs. native
hybrid browsers

 140
140
111

176

202
176

67, 38, 200
73, 45ff.

73ff.
221
119

138
39
75

132
211

45ff.
31

174
75ff.

75
53, 152, 174

18
215
24

142
131ff.

87
142

Index
46, 78

24
222ff.

198
94, 115, 205

103
87

119
118
118
118

19, 68
47, 79

104
104
153

151, 159

116
156ff.

190

27
41

150
28, 36

72

220
53

I
ideal viewport
initial containing block
initial-scale
installed base share
interaction mode
iOS
iOS browsers

J
JavaScript events
JavaScript properties

L
layout viewport

M
maximum zoom
maximum-scale
media queries
media types
meta viewport
minimum layout viewport width
minimum zoom
minimum-scale
mobile device vendors
mobile network
mobile network operators
mobile testing
mobile value chain
mouse event bubbling

N
native
Nokia

93
90

107
30, 35

155, 165
36ff.

54

124
122ff.

90ff.

100
110
112
113
105
109
100
110

18, 25
214

17
197

17
174

221ff.
40

O
Opera Mini
Opera Mobile
operators
orientation media query
orientationchange event
OS vendors
overflow-scrolling
overflow: auto

P
page zoom
perfect meta viewport
physical resolution
pinch zoom
pixels
pointer events
pointerout
pointerover
position: fixed
preventing defaults
progressive input
enhancement
proxy browsers

R
rendering engines
resize event
resolution media query

S
sales market share
scrolling
sharing devices
smartphone
smartphone development
cycle

50
94
17

119
124
38

137
136

98
108
102
99
86

148ff., 187
162
162

133, 96
184
164

49ff.

55
124

102, 104, 118

30ff.
154, 185

203
27

25

T
tap action
testing in batches
testing process
testing strategy
testing tools
Tizen
touch action event cascade
touch events
touch-action
touchLists

U
user-scalable=no

V
vh unit
viewports
visual viewport
vw unit

W
WebKit
WebViews
width
window.devicePixelRatio
Windows Phone

Z
zooming

171
208
210

204, 208
206

40
170

147ff., 180
191

180

100

139, 96
85, 89

92
139,96

56
48

106
104
39

96

	Table of Contents
	Introduction
	The Mobile World
	Browsers
	Android
	Viewports
	CSS
	Touch And Pointer Events
	Becoming A Mobile Web Developer
	The Future Of The Web On Mobile

